

Page 1 of 11

011010010011100101011
010110101001011101110
001011101010101011101
100101001010110101010
100110101101001001110
010101101011010100101
110111000101110101010
101110110010100101011
010101010011001101001
001110010101101011010
100101110111000101110
101010101110110010100
101011010101010011001
101001001110010101101
011010100101110111000
101110101010101110110
010100101011010101010
011001101001001110010
101101011010100101110
111000101110101010101
110110010100101011010
101010011001101001001
110010101101011010100
101110111000101110101
010101110110010100101
011010101010011001101
001001110010101101011
010100101110111000101
110101010101110110010
100101011010101010011
001101001001110010101
101011010100101110111
000101110101010101110
110010100101011010101
010011001101001001110
010101101011010100101
110111000101110101010
101110110010100101011
010101010011001101001
001110010101101011010
100101110111000101110
101010101110110010100
101011010101010011001
101001001110010101101
011010100101110111000
101110101010101110110
010100101011010101010
011001101001001110010
101101011010100101110
111000101110101010101
110110010100101011010
101010011001101001001
110010101101011010100
101110111000101110101
010101110110010100101
011010101010011001101
001001110010101101011
010100101110111000101
110101010101110110010

Replication Database

ODABA
NG

 run

 Page 2 of 11

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, October 2012

 Page 3 of 11

Content

1 Introduction .. 4
ODABA2 ... 4
Platforms .. 4
Interfaces .. 4
User Interfaces ... 4

2 Replication Database ... 5
Master .. 5
Clients .. 5
Synchronize Database ... 5
Enable/disable .. 6
Limitations .. 6

Database Synchronization .. 7
Backup database.. 7
Transaction limit ... 7
Force reload ... 7

Transactions and locking... 8
Throughput ... 8
Concurrency ... 8
Locking ... 9
Temporary Collections ... 9

Replication bridge .. 11
Local replication clients .. 11
File server ... 11
Object server .. 11

 Page 4 of 11

1 Introduction

ODABA2 ODABA2 is an object-oriented database system that
allows storing objects and methods as well as causali-
ties. As an object-oriented database, ODABA2 supports
complex objects (user-defined data types), which are
built on application relevant concepts.

ODABA2-applications are characterised by a high flexi-
bility that is achieved by supporting in addition to object
(concept) hierarchy, multifarious relations between ob-
jects (master and detail relations, relations between in-
dependent objects and others). This way conditions and
behaviour of objects in the real world can be represented
considerably better than in relational systems.

ODABA2-applications cannot only be drawn up as
event-driven applications within the field of the graphical
surface but also at the database level. This is one more
way in which the application design is very close to the
problem.

This makes ODABA2-applications a favourite possibility
to solve highly complex jobs as come up in administra-
tive and knowledge areas.

Platforms ODABA2 supports windows platforms (Win-
dows95/98/Me, Windows NT and Windows 2000) as well
as UNIX platforms (Linux, Solaris).

You can build local applications or client server applica-
tions with a network of servers and clients.

Interfaces ODABA2 supports several technical interfaces:

 C++, COM as application program interface (this
allows e.g. using ODABA2 in VB scripts and ap-
plications)

 ODBC (for data exchange with relational data-
bases)

 XML (as document interface as well as for data
exchange)

User Interfaces ODABA2 provides special COM-Controls that easily al-
low building applications in Visual Basic. On the other
hand ODABA2 provides a special ODABA2 GUI builder
based on the QT framework.

 Page 5 of 11

2 Replication Database

 Replication database in ODABA is a feature, that not
only allows creating a database replicate for security
reasons, but also supports client in slow network envi-
ronments as the internet.

 Replication clients are the best solution, when running
the server in a slow network (e.g. running a server in the
internet). Replication clients may become inefficient
when the client has intensive write access to the server,
as for importing large amount of object instances.

Master Within a simple replication environment, there exists one
replication master, which has access to the replication
master database. The replication master will synchronize
data for all connected clients, i.e. it always keeps clients
up-to-date.

 Each transaction the replication master receives from its
clients is sent to all connected clients. It is also stored in
a transaction cache. Thus, clients can also be updated,
when they have been offline for a while.

Clients Replication clients are applications, which run some-
where in the network. Replication clients do have a local
database replicate, which is accessed by the application.

Synchronize Da-
tabase

When starting up a replication client the first time, the
client will download a database backup from the replica-
tion master. This will also happen, when the replication
client is outdated.

A replication client is outdated, when the version of the
client database does nit correspond to the server ver-
sion.

 When starting a replication client the next time, the client
is synchronized with the server by loading all missing
transactions, i.e. all transactions registered after the last
client session. While running the replication client, the
local database copy is updated always, when starting a
read transaction, i.e. when requesting data from the da-
tabase.

 Updates made by the client are sent to the replication
master immediately after finishing a transaction (internal
or user transaction). The server updates the master da-
tabase and sends a dirty event to all other clients con-

 Page 6 of 11

nected.

Enable/disable Once, a database has been enabled for replication, it
can be disabled for being used again in a local environ-
ment. Since databases enabled for replication cannot be
used in local environment in parallel, replication data-
bases will automatically be disabled when being used in
a local environment.

 After using the database in local mode, it cab be re-
enabled for replication.

Timestamp Always when a database, which in not enabled for repli-
cation, will be enabled, the replication database gets a
time stamp, which is used later on for comparing data-
base versions.

Version A database version is set in addition to the time stamp
for identifying the database. This version is set to 0 when
the database has been time stamped. You may explicitly
increase the replication version by re-enabling an ena-
bled replication database.

Limitations In the current version, running replication server may
conflict with other ODABA features.

Workspace Replication servers do not work properly when the work-
space feature has been enabled for the database.

Local clients Each client for a replication database needs its own da-
tabase copy, i.e. each application running on a replica-
tion database must have its own replicate, also when
running on the same machine.

In one of the next versions this limitation will be removed
and database replicates can be shared in a local net-
work.

 Page 7 of 11

Database Synchronization

Backup database For updating new or outdated clients, the replication da-
tabase is loaded as backup from the replication server.
The backup must be located on a (WEB) folder, which is
accessible for all clients.

 Usually, the backup will not represent the latest state of
the replication database, since several clients may have
updated the database after the backup has been made.

 Hence, after downloading the backup, the client tries to
synchronize the database state with the replication mas-
ter. This can work properly, only when the database
backup has the same version and the same timestamp
as the current replication master database.

 In general, it is suggested to run a service, which creates
a database backup each day (or night) to reduce the
server burden at run-time.

Transaction limit When the number of transactions becomes very large,
starting up an application may take some time. Hence,
the number of transaction stored for synchronisation can
be limited (default: 5000). The replication master will re-
move transactions from the cache, which are below the
maximum number of transactions to be transferred.

 When a replication client starts that cannot be updated
by the transactions registered (i.e. the difference be-
tween the last transaction number the client received
and the current transaction number exceeds the transac-
tion limit), the client is considered as outdated and a
backup of the database is sent to the clients.

 Hence, the database backup, which can be downloaded
from the replication server, must never be outdated or
nearly outdated, because clients may fail to start up in
this case.

Force reload To force clients to reload the latest backup from the da-
tabase (e.g. because of an error correction), the replica-
tion database must get at least a new version by explicit-
ly re-enabling it.

 Page 8 of 11

Transactions and locking

 When running replication clients, write transactions are
serialized. This is necessary to guarantee database con-
sistency.

 Practically it means, that a client starting a write transac-
tion (internal or user transaction) will block the replication
master against other write transactions, i.e. other clients
have to wait, until the first client has finished its transac-
tion.

Throughput Most transactions in ODABA applications are internal
transactions, which take about 1 millisecond on the
server, but taking into account, that communication re-
quires about 50 milliseconds in addition, the limits of the
replication master become obviously. Thus, under ideal
conditions, the replication server can process about 20
transactions per second.

 To avoid unnecessary communication overhead, se-
quences of modifications should be enclosed in transac-
tions. User transactions will reduce the number of com-
munications to 2 (start and stop transaction).

 Also Critical is the use of long user transactions, since
each transaction will block the server as long as it is ac-
tive. Thus, user transactions should not exceed a few
seconds and should never require user interactions dur-
ing the transaction. In this case, users may block the
whole system.

Concurrency The pessimistic locking algorithm prevents the applica-
tions from producing database inconsistencies. Since
each client will synchronize its database before starting
the transaction it is sure, that the client database state
corresponds to the master database, when running a
transaction.

 In some cases, however, the client receives new data
from the server for the instance, which is just under pro-
cessing, since it has been updated by another client.
Since ODABA starts the internal transaction, just before
going to store changes made on an instance, i.e. after all
changes have been made on the internal instance based
on the state the instance had when being read.

 This is not only a replication database problem, since it
happens also for file server or ODABA server applica-

 Page 9 of 11

tions. The system detects the difference for the instance
version and refuses storing the changes.

Locking To avoid concurrency conflicts, you may lock the in-
stance explicitly before going to update it. There is an
essential difference to file server or object server appli-
cations, which prevents all other applications from using
an instance being updated. Locking for a replication
server works only when all client applications will explic-
itly lock instances being used.

Write protection ODABA provides an implicit pessimistic locking feature
for file server or object server applications by accessing
instances in write mode (instead of update mode). This
works similar for the replication server, but it might be
time consuming, since each internal lock may require
between 30 and 100 milliseconds on the client, which
corresponds to the communication time between client
and server.

 When using implicit write locking, each instance is
blocked on the server against write requests from other
clients. But there is still a difference to file or object serv-
er applications. While file or object server check any in-
stance (update instances included) for internal write pro-
tection, the replication server only checks explicit write
requests.

Tranferring write
locks

In general, it would be possible to transfer write locks
among the clients, but this is not yet implemented for the
replication server. The question is still, whether such a
feature is practical useful or not. Most applications do
not use implicit write locks, since it strongly restricts the
accessibility for the data. Thus, it seems more appropri-
ate to take the risk of a failing transaction, which is usu-
ally restricted to a single instance.

Indexes Indexes and collections are not affected by the locking
problem, since those are updated within internal transac-
tion, only. Applications do never change index states
directly as they do for instance states.

Temporary
Collections

In many cases, query results are stored in temporary
collections. Updates or instances written to temporary
collections need not to be transferred to the replication
server. Since the transaction running does not know,
which resources will be updated, starting a transaction
will always submit a start transaction message to the
replication master.

 Page 10 of 11

 Even though no data is transferred to the replication
master in case of updating temporary resources, only,
each create or add to the temporary collection will send
a Begin- and CommitTransaction() to the replication
server. Thus, each transaction takes about 100 ms in
addition, while the real transaction time is perhaps about
1 ms.

DisableWrite To avoid unnecessary communication with the replica-
tion master, you may temporarily disable the write fea-
ture for the database handle, which still allows writing to
temporary resources but not to the “real” database.

 Page 11 of 11

Replication bridge

 A replication client may act again as server. Thus you
may build a hierarchy of replication servers with a repli-
cation master on top. This is a theoretical possibility and
has not yet been tested.

 It might help, when clients are distributes all over the
world to improve the performance.

 So far, it has not yet been discussed, how replication
bridges could work in a network. This we have left for the
future.

Local replication
clients

A more interesting use case is running a local replication
client as file or object server e.g. within the local network
of an organization. This makes sense especially, when
having a larger number of clients working with the data-
base (more that 10 or 20).

 In this case the traffic between the replication clients and
the master is reduced extremely, since instead of 20
only one replication client needs to be synchronized.

 Another positive aspect in such an environment is, that
within the local network implicit write locks are fully sup-
ported, i.e. the risk of update conflicts is reduced.

File server When running the replication client as file server, each
client reports its transactions to the replication master.
The database is synchronized by the first client, which
detects that the database is not up-to-date. The other
clients may receive a dirty event, but in most cases there
will be nothing new to be updated.

Object server When running the replication client as object server, the
object server is the only client communicating with the
replication master. In this case, communication is re-
duced to the communication between object server and
replication master. Internally, all clients communicate
only with the object server.

