
- 1 -

01101001001110010101101011
01010010111011100010111010
10101011101100101001010110
10101010011010110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100110100
10011100101011010110101001
01110111000101110101010101
11011001010010101101010101
00110011010010011100101011
01011010100101110111000101
11010101010111011001010010
10110101010100110011010010
01110010101101011010100101
11011100010111010101010111
01100101001010110101010100
11001101001001110010101101
01101010010111011100010111
01010101011101100101001010
11010101010011001101001001
11001010110101101010010111
01110001011101010101011101
10010100101011010101010011
00110100100111001010110101
10101001011101110001011101
01010101110110010100101011
01010101001100110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100101001

run

OShell Command Reference

ODABA NG

- 2 -

run Software-Werkstatt GmbH
Winckelmannstrasse 61
12487 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, September 2018

- 3 -

Table of Contents
1 Introduction..5

2 Process flow control commands..6

2.1 Run command block and reset state (BEGIN)...6

2.2 Run command block and keep state (DO)...6

2.3 Terminate command block (END)...6

2.4 Leave block (LB)..7

2.5 Return from procedure (RETURN)...7

2.6 Quit application (QUIT)...7

2.7 Exit application (EXIT)..8

2.8 Pause process (PAUSE)..8

2.9 Conditional execution (IF)..9

2.10 Do while condition is true...10

2.11 Do for all instances in current collection (FA)..11

2.12 Call procedure file (CALL)..12

3 Common OShell Commands...13

3.1 Display command help (HELP)..13

3.2 Load procedure file (LOAD)...13

3.3 Set option variable (SET)...14

3.4 Redirect OShell output (REDIR)...14

3.5 Echo command input (ECHO)..15

3.6 List data sources (LD)..15

3.7 Change data source (CD)..15

4 OShell data source commands...16

4.1 List extent names (LCN)...16

4.2 Change collection (CC)..17

4.3 Run OSI statement(s) (OSI)...18

4.4 Display formatted data (FORMAT)...19

4.5 Execute database context action (DATABASEACTION)............................19

4.6 Execute object space context action (OBJECTSPACEACTION)...............20

5 OShell data collection commands..21

5.1 Collection list commands..21
5.1.1 List collection property names (LCN)...21
5.1.2 List attribute property names (LAN)...22
5.1.3 List keys (LK)...22
5.1.4 List order keys (LO)..23
5.1.5 List instances (LI)...23

- 4 -

5.1.6 Show attribute or expression values (PRINT)....................................24
5.1.7 Set attribute list (SAL)..24

5.2 Collection settings..25
5.2.1 Change sort order (CO)..25
5.2.2 Set filter condition (SF)...26

5.3 Collection manipulation commands..27
5.3.1 Locate instance (LOC)...27
5.3.2 Position forward (NEXT)...28
5.3.3 Position backward (PREV)...28
5.3.4 Create instance (CRT)...29
5.3.5 Copy instance (CPY)..30
5.3.6 Move instance (MOV)..31
5.3.7 Delete instance (DEL)..32
5.3.8 Set attribute value (SAV)..33
5.3.9 Execute property action (PROPERTYACTION).................................33
5.3.10 Execute instance action (INSTANCEACTION).................................34

6 Debug commands..35

6.1 Debug commands controlling execution...36
6.1.1 Set break point (BREAK)..36
6.1.2 Reset break point (DISABLE)...37
6.1.3 Break at each statement (BREAKALWAYS).......................................37
6.1.4 Execute next statement (N)..37
6.1.5 Step into function (STEP)...38
6.1.6 Go to line (JUMP)...38
6.1.7 Skip statement (JUMPOVER)..38
6.1.8 Leave function (FINISH)...39
6.1.9 Continue application (CONTINUE)...39
6.1.10 Run application (RUN)...39
6.1.11 Terminate debugging (QUIT)..39
6.1.12 Change stack limit (STACKLIMIT)..40

6.2 Information commands...41
6.2.1 List call stack (BACKTRACE)...41
6.2.2 Change stack frame (FRAME)...41
6.2.3 List function (LIST)...42
6.2.4 List current line (LISTCURRENT)..42
6.2.5 Define watch variable (WATCH)...43
6.2.6 Delete watch expression (DELETEWATCH)......................................43

- 5 -

1 Introduction

OShell is a command line utility that allows running most of the ODABA access
functions from a command line. In contrast to OSI, OShell is not a query tool, but a
way to navigate through a database similar to navigating through the directory
structure on a disk. OShell commands are not case sensitive. For documentation
purposes upper case letters are used in this chapter. Most of commands have got
an abbreviation. Details for calling OShell are described in 3.1_DatabaseUtilities.

Typically, OShell is called as

OShell ini_file [script_file]

A script file may be passed in order to run a predefined request. When the script
file does not contain a quit command, OShell changes into command line input
mode, which allows entering further commands.

Typically, one has do select a data source and a data collection at the beginning:

CD Sample

CC Companies

In order to enable certain options (e.g. for debugging), one may use the SET com-
mand. The following topics contain a short description for available commands.

When parameters passed to a command contain spaces or other special charac-
ters, parameters have to be passed within apostrophes (') or quotes ("). In order to
insert comment lines, those have to begin with double slash (//).

Additional options may be passed to many commands, which are indicated b '-'
(e.g. -D1). Options are always optional, but not always explicitly marked as such.

All OShell commands are case insensitive. Most command may be called with a
short command name.

- 6 -

2 Process flow control commands

In order to support conditional processing or loops, a number of process flow com-
mands are supported. A list of sub-commands for a process flow command (e.g. IF
or WHILE) may be embedded in a DO/BEGIN-END block.

2.1 Run command block and reset state (BEGIN)

The command introduces a block of commands, which is terminated by an END
command. Command lines must be entered completely before the block is exe-
cuted. In contrast to DO, the state of the process is saved at beginning and re-
stored at the end, i.e. commands in the BEGIN block may change the current col-
lections and instance selections without affecting processing after the END state-
ment.

Syntax:
 begin

2.2 Run command block and keep state (DO)

The command introduces a block of commands, which is terminated by an END
command. Command lines must be entered completely before the block is exe-
cuted. In contrast to BEGIN, DO returns he current state of selected collections and
instances after terminating the DO block.

Syntax:
 do

2.3 Terminate command block (END)

The command terminates a command block, which has been introduced by a DO
or BEGIN command. With the end command processing of statements within the
block begins. This includes also syntax and semantic checks of the commands in
the block.

Syntax:
 end

- 7 -

2.4 Leave block (LB)

The LB or LEAVEBLOCK statement allows leaving a BEGIN/DO-END block before
processing all statements. This is important especially for leaving while blocks.

The command will leave the current block and continue with the next statement af-
ter the END statement.

Syntax:
 leaveblock|lb

2.5 Return from procedure (RETURN)

When calling a procedure defined in a command file, the defined procedure should
be terminated by a RETURN statement. The command will leave the current proce-
dure and continue with the next statement after the procedure call. When no RE-
TURN statement has been defined, the command continues until the end of the
command file. This may also include commands of a subsequent procedure in the
command file.

Syntax:
 return

2.6 Quit application (QUIT)

The command will close all collections and data sources and terminate the OShell
program. When running OShell from a command-line console with a command file,
that does not contain a QUIT command, OShell changes to command input via
console.

When debugging GUI applications or context functions, quit may not work prop-
erly. In this case, one may also call exit.

Syntax:
 quit|q

- 8 -

2.7 Exit application (EXIT)

The command will exit the OShell immediately. This is an emergency function,
which might not close databases properly.

Syntax:
 exit

2.8 Pause process (PAUSE)

The command stops the execution until any key is pressed.

Syntax:
 pause

- 9 -

2.9 Conditional execution (IF)

The command allows running a command or a sequence of commands under cer-
tain conditions. The command is executed when the expression is true. One
may also run a sequence of commands enclosed in a BEGIN/DO-END block. The
complete IF statement including command or BEGIN/DO has to be defined on a
single line.

Parameters:
• expression - The OSI expression defines the condition to be checked

before running the command(s). The expression must be a valid OSI ex-
pression. When the expression contains special characters it must be put
into quotes or apostrophes.

• command - The command to be executed when the condition ist true. For
processing a block of statements one may use CALL for running a pre-de-
fined procedure or a BEGIN/DO-END block.

• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 if expression command -Dn - Cn

Examples:
 if "age > 20" p name // Show value for 'name' when age > 20
 if "age > 20" do // Show value for 'name' and 'age' when age > 20
 p name
 p age
 end

- 10 -

2.10Do while condition is true

The command allows running a command or a sequence of commands in a BE-
GIN/DO-END block as long as the condition passed in expression is true. In con-
trast to FA, the function does not implicitly change the selection for the collection.
Instead of a single command one may pass a sequence of commands enclosed in
a begin/do-end block. The complete WHILE statement including command or BE-
GIN/DO has to be defined on a single line.

Parameters:
• expression - The OSI expression defines the condition to be checked

before running the command(s). The expression must be a valid OSI ex-
pression. When the expression contains special characters it must be put
into quotes or apostrophes.

• command - The command to be executed when the condition ist true. For
processing a block of statements one may use CALL for running a pre-de-
fined procedure or a BEGIN/DO-END block.

• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.
• -In - limit number of iterations to n\n");

Syntax:
 while expression command -Dn -Cn -In

Examples:
 while "++age < 20" p age // print age as long as age < 20
 while next begin // Print name for all persons with age > 20
 if 'age > 29' p name
 end

- 11 -

2.11 Do for all instances in current collection (FA)

The statement allows running command for all instances in a collection. FA starts
with the currently selected instance or with the first one when no instance is se-
lected in the collection. The complete FA statement including command or BE-
GIN/DO has to be defined on a single line.

Parameters:
• command - The command to be executed in each iteration of the loop. For

processing a block of statements one may use CALL for running a pre-de-
fined procedure or a BEGIN/DO-END block.

• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.
• -In - limit number of iterations to n.

Syntax:
 fa command -Dn -Cn -In

Examples:
 fa lav // List attribute values for instances in a collection
 fa call proc1 // run procedure proc1 for instances in the collection
 fa lav -D2 -C1 //show attributes for instances in collection 1 of data
 // source 2
 fa do // run the list of subsequent commands for all instances
in
 ... // current collection beginning at selected instance
 end // ('end' requested at end of commandlist)

- 12 -

2.12Call procedure file (CALL)

The command runs commands from the file. Procedure files should not contain
quit statements (q), since this will terminate the OShell program;

Parameters:
• file_name - complete path to the file containing the instructions. When

no file name is passed, the procedure must be defined in the current com-
mand file or has to be loaded explicitly (LOAD)

• entry_point - when an entry point is appended to the file name the pro-
cedure is not processed from the beginning but from the entry point, which
must be a defined entry point in the procedure.

• parameter - Any number of parameters may be passed to the procedure
called. The receiving procedure may refer to parameters by %1, %2 etc.

When calling a procedure file name with an entry point like

CALL myprocs.osh@start

the entry point name must precede the file name without space. The entry point
must be defined in the file on a single line preceded by @, in this case @start. In
order to return from the procedure, return has to be called. Otherwise, the pro-
cedure returns after last line in the command file.

Syntax:
 call [file_name][@entry_point] [parameter [parameter] ...]

- 13 -

3 Common OShell Commands

Common OShell commands are those that do (usually) not require an opened data
source or data collection, but may also be called when data sources or collections
are opened.

3.1 Display command help (HELP)

The command shows available commands or details for one command.

Parameters:
• command - name of the command to be displayed.
• -d - show details for each command (default for 'command')
• -a - show all commands (ignored in connection with 'command')
• -e - show extended commands (ignored in connection with 'command')

Syntax:
 help [command] [-d] [-a] [-e]

3.2 Load procedure file (LOAD)

The command loads commands from the file. A loaded procedure or entry points in
a loaded procedure can be called at any time after the procedure is loaded.

As long as entry points in all loaded procedures are unique one may call an entry
point without prefixing the procedure path (call). If entry point names are not
unique, the procedure path must be entered before the entry point name.

Parameters:
• file_name - complete path to the file containing the procedure(s).

Syntax:
 load file_name

- 14 -

3.3 Set option variable (SET)

The function allows setting or displaying a value for an option or environment vari-
able. Not passing any parameter will display all variables set. Option variables are
not case sensitive.

Parameters:
• var_name - Name for the option variable (may be referenced as

%var_name%)
• value - value to be set for the variable

Syntax:
 set var_name [[=]value]

Examples:
 set NAME='Smith'; // Setting value for NAME to 'Smith'
 set NAME // display current settings for NAME
 set NAME= // reset current settings for NAME
 set // display current settings for all variables

3.4 Redirect OShell output (REDIR)

The function allows the permanent redirection of output for the subsequent com-
mands. Only data output is redirected to the file location passed to the command.
Error and system messages are still written to the standard output. Calling redir
without parameter will reset the redirection of the output.

Redirection of the output is also reset at the end of a do block, when being speci-
fied within the block or at the end of a called procedure, when being activated
within a procedure.

Parameters:
• path - location (file name) for redirection.

Syntax:
 redir [path]

Examples:
 redir %HOME%/out.txt // write output to file out.txt
 redir // reset redirection for getting the output on
 // standard output

- 15 -

3.5 Echo command input (ECHO)

With 'echo on' you will cause OShell to display commands entered directly or via
procedure. 'echo off' will switch off this feature. 'echo 'any text' will display the mes-
sage on the console. The function is not intended to display instance data. In order
to display data, print may be used.

Syntax:
 echo [on | off | 'any text']

3.6 List data sources (LD)

The command displays available data sources defined in a catalog. The command
does not display data sources defined in a configuration or ini-file.

Syntax:
 ld

3.7 Change data source (CD)

The command allows opening a data source or switching to another data source
context. Not passing any parameter will show a list of opened data sources pre-
ceded by a data source number (dsid). Passing a dot (.) as parameter will close
the current data source.

Parameters:
• dsname - data source name as defined in the catalog or configuration or

ini-file section.
• dsid - data source identifier for opened data source (internal number).
• * - create a copy of current data source.
• . - close currently selected data source
• -Dn - re-direct command to data source referenced by internal number n.

Syntax:
 CD [dsname|*|dsid|.] -Dn:

Examples:
 cd // Displays currently opened data sources
 cd ProjectDB // Open data source 'ProjectDB' (must be defined in
 // catalog or ini-file
 cd 2 // Switch to data source 2 (must bee opened calling CD)
 cd . // Close current data source and switch to previous.
 cd * -D2 // Create a data source copy from data source 2
 cd . -D3 // Close data source 3

- 16 -

4 OShell data source commands

Data source commands are available when a data source has been opened. Data
source commands do not require an opened collection but may also be called,
when a collection has been opened.

4.1 List extent names (LCN)

When no collection is opened (CC), the command lists the collection names for the
data source (extents). When a collection is opened, the command lists the sub-col-
lection names available for instances in the opened collection.

Parameters:
• mask - display collection names according to the mask, only. The mask

may contain * as place holder(s).
• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 lcn [mask] -Dn -Cn

Examples:
 lcn // list all extent names
 lcn ABC* // list all extent names beginning with ABC

- 17 -

4.2 Change collection (CC)

The command allows closing, opening or switching to an opened collection. Pass-
ing an invalid collection name will also be accepted, but later commands may fail.
Calling the command without parameters shows the current hierarchy. Collection
numbers are prefixed with following meaning:

• + - An istance is selected in the collection
• * - collection is the currently active collection
• - - no instance selected in the collection

Parameters:
• prop_path - extent or property name for the collection to be opened.

One may also define an access path or view path as property path.
• col_id - change to an opened collection in the hierarchy.
• . - close current collection and return to parent. One may also close more

than one collections by passing more than one dot.
• / - close all collections in a hierarchy.
• -Dn - re-direction to other data source.

Syntax:
 cc [prop_path | coll_id | . | /] -Dn

Examples:
 cc Person // Open the 'Person' extent in the current data source
 // In this case, no collections must be opened.
 cc /Person // Open the 'Person' collection in the current data
 // source after closing the currently opened hierarchy
 cc . // Close last collection in hierarchy
 cc ..children // Close the last two collections and open the collection
 // 'children'
 cc 2 // Switch to collection 2 in the current hierarchy
 // without closing
 cc // Displays the current collection hierarchy and
 // collection ids

- 18 -

4.3 Run OSI statement(s) (OSI)

The command allows running an OSI expression for the selected collection. One
operand on the same line may follow the OSI command. For running complex ex-
pressions, a list of statements can be included in a DO-END or BEGIN-END block.

Parameters:
• expression - The expression must be an osi expression. Expressions

containing special characters must be quoted (no semicolon at the end!).
The expression must be defined completely on the same line.

• statement - A valid OSI statement or a block of statements enclosed in
BEGIN/DO-END..

• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 osi expression // single osi call
 osi do // block of statements
 ... // osi statements
 end // end of block

Examples:
 osi TotalIncome // call OSI function defined for the currently
 // selected data type
 // call OSI expression with special characters
 osi "if count > 0 Message('Income: ' + (string)TotalIncome)"
 // call OSI with statement(s) returning a view result
 osi do
 select (name, first_name)
 from (Person)
 where (name > 'H');
 end
 fa p // show results

Notes: Since OSI command works on current collection (except in case of BEGIN
block), the selection for the current collection may have changed. Moreover, OSI
commands may change database content.

- 19 -

4.4 Display formatted data (FORMAT)

The command allows displaying the content of the currently selected instance in a
formatted string. When no instance is selected, instance variables remain empty.
One may use the print command in a WHILE of FA loop for displaying a collection
of instances.

The format command does not automatically creates a new line at ent of string, i.e.
new lines must be specified explicitly.

Parameters:
• fstring - the format string contains fixed text and '%s' variables, which

are replaced by values of the parameters passed to the command.
• parm - any variable name or expression, which can be evaluated for the

selected instance, can be passed as parameter. All parameters are con-
verted into strings automatically, before being passed to the format string.

• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 format|f fstring [parm(*)] -Dn -Cn

Examples:
 format "hello world\n" // prints a constant text
 // print person data in a formaatted line
 format "The address of %s %s is %s\n" first_name last_name address

4.5 Execute database context action (DATABASEAC-
TION)

The function runs the action named in action_name passing optional parameters.
The action called must be implemented in the database context.

Parameters:
• act_name - action name for the database action as defined in the data-

base context class.
• parm - parameters passed to the action.
• -Dn - re-direction to other data source.

Syntax:
 databaseAction act_name [parm(*)] -Dn

- 20 -

4.6 Execute object space context action (OB-
JECTSPACEACTION)

The function runs the action named in action_name passing optional parameters.
The action called must be implemented in the object space context.

Parameters:
• act_name - action name for the object space action as defined in the ob-

ject space context class.
• parm - parameters passed to the action.
• -Dn - re-direction to other data source.

Syntax:
 objectSpaceAction act_name [parm(*)] -Dn

- 21 -

5 OShell data collection commands

Data collection commands are available when a data collection has been opened.

5.1 Collection list commands

In order to display data and meta data for an instance/collection, a number of list
commands has been provided.

5.1.1 List collection property names (LCN)

The command lists the collection property names available for the data type of the
opened collection.

Parameters:
• mask - display collection names according to the mask, only. The mask

may contain * as place holder(s).
• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 lcn [mask] -Dn -Cn

Examples:
 lcn // list all collection property names
 lcn ABC* // list all collection property names beginning with ABC
 lcn -D3 -c2 // list all collection property names for collection 2
 // of data source 3

- 22 -

5.1.2 List attribute property names (LAN)

The command lists the attribute names available for instances of the current or ref-
erenced collection.

Parameters:
• mask - display collection names according to the mask, only. The mask

may contain * as place holder(s).
• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 lan [mask] -Dn -Cn

Examples:
 lan // list all attribute names
 lan name* // list all attribute names beginning with 'name'
 lan -D3 -c2 // list all attribute names for collection 2, data source 3

5.1.3 List keys (LK)

The command lists the keys defined for data type of currently opened/active data
collection. This is not identical with the list of indexes (sort orders) for the collec-
tion, which can be displayed with the 'lo' command.

Parameters:
• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 lk -Dn -Cn

- 23 -

5.1.4 List order keys (LO)

The command lists the order keys (key names) available for instances of the cur-
rent or referenced collection.

Parameters:
• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 lo -Dn -Cn

5.1.5 List instances (LI)

The command shows lists all instances of the collection by key value or position.
Passing the position parameter (p) will display the index-position in front of the
key value.

Parameters:
• p - show instance position in front of each line

• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 li [p[osition]] -Dn -Cn -In

- 24 -

5.1.6 Show attribute or expression values (PRINT)

The command shows the attribute value(s) for an operation path, a property, pa-
rameter or local or global variable. When an variable is complex, all attribute val-
ues for the complex data type are displayed. When expression is an operation
path, the operation result will be displayed. Calling the command without parame-
ters will list all attribute values for the currently selected data type.

Parameters:
• expression - attribute name or operation path to be displayed.
• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 print|p [expression] -Dn -Cn

Notes: Since print may call OSI functions, which may update data in the data-
base, the command allows implicitly also updating data.

5.1.7 Set attribute list (SAL)

The command allows setting an attribute list for the selected collection, that are
listed when calling the print (p) command.

Parameters:

• attr_name_n - attribute name to be displayed
• -Dn - re-direction to other data source context
• -Cn - re-direction to other collection th the hierarchy
• -A - append current attribute list. When this option is not set the list is

deleted and rebuilt.

Syntax:
 sal attrname_1 ... attrname_n -A -Dn -Cn

Examples:
 sal name income // creates a new attribute list with 'name' and
 // 'income'
 sal first_name -A // adds 'first_name' to the attribute list
 sal name -D2 -C1 // creates a new attribute list with 'name' for
 // collection 1 in datasource context 2

- 25 -

5.2 Collection settings

Collection settings commands provide some features for collection access control.

5.2.1 Change sort order (CO)

The command allows changing the sort order for the current collection. In order to
get valid index names for (the collection, LO may be used.

Parameters:
• key_name - key name for an index defined for the collection. When no

key name is passed the default order is set.
• gen_attr_val - optional to the key name a value for generic orders

(usually language) can be passed in order to change to a language de-
pendent index.

• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 co key_name [gen_attr_val]-Dn -Cn

Examples:
 co sk_name // set collection order to index 'sk_name'
 co // reset default order
 co sk_name English // set collection oder to key 'sk_name' for Englisch
 co -C0 // reset default order in collection 0 (top
 // collection)

- 26 -

5.2.2 Set filter condition (SF)

The command restricts the number of visible instances in the current or referenced
collection by setting a filter condition. In order to reset the filter, the command may
be called without condition.

Parameters:
• condition - filter expression for the selection. The expression may be a

predefined OSI function or an inline expression. When defining inline ex-
pressions, those usually have to be quotes. In case of string delimiters
within the expression, alternative string delimiters have to be used for the
expression. As string delimiters ' and " may be used.

• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 SetFilter|sf [condition] -Dn -Cn

Examples:
 sf 'name > "S"' // display instances with name greater than S, only.
 // Constant string values must be put in quotes.
 sf // Reset filter condition

- 27 -

5.3 Collection manipulation commands

Collection manipulation commands are provided in order to change current in-
stance selection for a collection, but also for creating, updating and deleting data.
Most of these command results could also be achieved by calling OSI functions,
but OShell commands are a bit more comfortable.

5.3.1 Locate instance (LOC)

The command locates an instance in the referenced collection. Locating an in-
stance will reset the selections for all subsequent collections in the hierarchy. After
locating an instance it is selected in the collection.

Parameters:
• key_value - key value for the instance to be located (ordered collection).

When the key value is a numeric key or contains special characters, it has
to be put in quotes.

• pos - position of instance to be located in the collection (relative 0).
• -S - show key for the instance located
• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 loc [key_value|pos] -S -Dn -Cn

Examples:
 loc Miller|Paul // locate instance for key 'Paul|Miller'
 loc 0 // locate first instance n collection
 loc "0" // locate instance with key value '0'

- 28 -

5.3.2 Position forward (NEXT)

The command locates the next instance by skipping a number of count instances.
The command will reset the selections for all subsequent collections in the hierar-
chy. After locating an instance it is selected in the collection.

Parameters:
• count - number of instances to be skipped (default is 0).
• -S - show key for the instance located
• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 next [count] -S -Dn -Cn

5.3.3 Position backward (PREV)

The command locates the previous instance by skipping a number of count in-
stances. The command will reset the selections for all subsequent collections in
the hierarchy. After locating an instance it is selected in the collection.

Parameters:
• count - number of instances to be skipped (default is 0).
• -S - show key for the instance located
• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 prev [count] -S -Dn -Cn

- 29 -

5.3.4 Create instance (CRT)

The command creates a new instance in the referenced collection. Creating an in-
stance will reset the selections for all subsequent collections in the hierarchy.

Parameters:
• keyval - key value for the new instance, when the collection is ordered

and key is not auto-number. Key components have to be separated by '|'.
When the key value contains special characters, it has to be quoted.

• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 crt [keyval] -Dn -Cn

Examples:
 crt Miller|Paul // Create an instzance for the person Paul Miller
 crt // Create an empty instance in the current collection
 crt -D3 -c2 // Create an empty instance in collection 2 in data
 // source 3

- 30 -

5.3.5 Copy instance (CPY)

The command copies a single instance or a collection of instances from the cur-
rent collection to the referenced collection. Copying an instance will change the
selections for all subsequent collections in the target hierarchy.

Parameters:
• key_value - key value for the instance to be copied (ordered collection).

Key components have to be separated by '|'. When the key value contains
special characters, it has to be quoted.

• position - position of instance to be copied
• . - cpoy instance currently selected in the collection
• * - copy all instances filtered in the current colletion (--> sfc)
• new_key - copy and rename instance of an ordered collection (copy sin-

gle instance, only
• -Dn - target data source for copy. When no target is defined, the instance

is copied to the current data source (e.g. rename)
• -Cn - target collection for copy. When no target collection is passed the in-

stance is copied to the current collection in the referenced data source (-
Dn)

Syntax:
 cpy keyval|position|.|* [new_key] -Dn -Cn

Examples
 cpy Miller|Paul // Copy person instance for Paul Miller to selected
 // instance
 cpy 0 // Copy first instance to selected instance
 cpy . -D3 -C2 // Copy selected instance to collection 2 in data
 // source 3

- 31 -

5.3.6 Move instance (MOV)

The command moves a single instance or a collection of instances from the cur-
rent collection to the referenced collection. Moving an instance will remove the in-
stance from the source collection and change the selections for all subsequent col-
lections in the target hierarchy.

Parameters:
• key_value - key value for the instance to be copied (ordered collection).

Key components have to be separated by '|'. When the key value contains
special characters, it has to be quoted.

• position - position of instance to be moved
• . - move instance currently selected in the collection
• * - move all instances filtered in the current collection (--> sfc)
• new_key - move and rename instance of an ordered collection (move sin-

gle instance, only
• -Dn - target data source for move. When no target is defined, the instance

is moved to the current data source (e.g. rename)
• -Cn - target collection for move. When no target collection is passed the

instance is moved to the current collection in the referenced data source
(-Dn)

Syntax:
 mov keyval|position|.|* [new_key] -Dn -Cn

Examples:
 mov Miller|Paul // Move person instance for Paul Miller to selected
 // instance
 mov 0 // Move first instance to selected instance
 mov . -D3 -C2 // Move selected instance to collection 2 in data
 // source 3

- 32 -

5.3.7 Delete instance (DEL)

The command deletes an instance in the referenced collection. Deleting an in-
stance will reset the selections for all subsequent collections in the hierarchy. Op-
tion -E allows deleting defect (not readable) instances.

Parameters:
• key_value - key value for the instance to be deleted (ordered collection).

Key components have to be separated by '|'. When the key value contains
special characters, it has to be quoted.

• position - position of instance to be deleted
• . - delete instance currently selected in the collection
• * - delete all instances filtered in the current collection (--> sfc)
• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.
• -E -Delete instances that cannot be read (usually by index).

Syntax:
 del keyval|position|.|* -Dn -Cn // normal instance
 del keyval|position -E // delete defekt instance

Examples:
 del Miller|Paul // Delete person instance for Paul Miller to selected
 // instance
 del 0 // Delete first instance to selected instance
 del . -D3 -C2 // Delete selected instance to collection 2 in data
 // source 3

- 33 -

5.3.8 Set attribute value (SAV)

The command assigns a new value to the attribute of the instance selected in the
current or referenced collection.

Parameters:
• attrname - name of the attribute for assignment. In case of complex data

types or not unique attribute names in a inheritance hierarchy, one may
also use an property path as attribute name (like a.b.c)

• value - value to be assigned to the attribute. The value is a constant, a
variable valid for the data type of the selected instance or an expression.

• -Q -do not display updated value
• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

An assignment operator (=) may be passed between attrname and value, but
need not.

Syntax:
 sav attrname [=] value -Dn -Cn -Q

Examples:
 sav name='Smith' // change name value to 'Smith'

5.3.9 Execute property action (PROPERTYACTION)

The function runs the action named in action_name passing optional parame-
ters. The action called must be implemented in the property context of current col-
lection.

Parameters:
• act_name - action name for the property action as defined in the property

context class.
• parm - parameters passed to the action.
• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 propertyAction act_name [parm(*)] -Dn -Cn

- 34 -

5.3.10 Execute instance action (INSTANCEACTION)

The function runs the action named in action_name passing optional parame-
ters. The action called must be implemented in the data type context of the data
type for the currently selected instance.

Parameters:
• act_name - action name for the database action as defined in the data-

base context class.
• parm - parameters passed to the action.
• -Dn - re-direction to other data source.
• -Cn - re-direction to other collection in the hierarchy or in the data source

referenced by -Dn.

Syntax:
 instanceAction act_name [parm(*)]

- 35 -

6 Debug commands

Debug commands are available when debugging OSI functions. Debug mode is
indicated by DEBUG at the beginning of the command line prompt. Debug mode
may be enabled (OSI.DEBUG=true) when running OSI, OShell but also when
running GUI applications.

Beside spcific debug commands, all other OShell commands are available during
debugging. When changing collections or debug frames, those changes will be re-
set before executing the next statement.

- 36 -

6.1 Debug commands controlling execution

While debugging, several commands allow controlling execution of a script.

6.1.1 Set break point (BREAK)

The command sets a break point at passed or current position.

Parameters:
• fname - function name for the function for setting the break point. The

function is searched in the current context, i.e. the currently selected data
type and its base types.

• class - In order to list functions in a different class, the function name has
to be scoped.

• line_number - In order to set a break point on another than the current
line a line number may be passed, which is valid in the selected frame.
Valid line numbers are displayed when calling the list (L) command

• proc_name - A procedure name containing a list of commands to be exe-
cuted when reaching the break point. The procedure name is either an en-
try point defined in the calling OShell script file or a file path to an OShell
script file with a preceding entry point name (e.g. ~/procs/breakpoints.os-
h@break12)

• do|begin - In order to enter break point procedure statements at run time
DO or BEGIN may be passed instead of procedure name. After entering
one or more commands, END may be entered in order to terminate the
procedure. In contrast to file procedures, RETURN is not required.

Syntax:
 break|b [[class::]fname] [line_number] [proc_name|do|begin]

Examples:
 b // set breakpont at current line
 b 10 // set breakpont at line number 10
 b bp10 // set breakpont at current line and call procedure
 // bp10 always when reaching the breakpoint.

- 37 -

6.1.2 Reset break point (DISABLE)

The command disables a break point at passed or current position.

Parameters:

• fname - Function name for the function for resetting the break point. The
function is searched in the current context, i.e. the currently selected data
type and its base types.

• class - In order to list functions in a different class, the function name has
to be scoped.

• line_number - In order to reset a break point on another than the current
line a line number may be passed, which is valid in the selected frame.
Valid line numbers are displayed when calling the list (LIST) command.

Syntax:
 disable|d [[class::]fname] [line_number]

Examples:
 d // reset breakpont at current line
 d 10 // reset breakpont at line number 10

6.1.3 Break at each statement (BREAKALWAYS)

This is a run command, which causes the debugger to stop at each statement.

Syntax:
 breakAlways|ba

6.1.4 Execute next statement (N)

Executes the current statement without stepping into function.

Syntax:
 n

- 38 -

6.1.5 Step into function (STEP)

Step program until it reaches a different source line. Argument N means do this N
times (or till program stops for another reason). The function is also called 'step
into' in some environments.

Syntax:
 step|s

6.1.6 Go to line (JUMP)

The function allows changing the current line in a function. The next statement ex-
ecuted is the statement at the function addressed by number. When the line is
empty, the next valid statement will be selected. When the line is at the end of
function, the function returns to the calling function. When changing statement in
another frame, called functions are canceled.

Parameters:

• number - line number to be called (use L to see numbers)

Syntax:
 jump|j [number]

Examples:
 j 10 // continues with executing line 10
 j 999 // leaves the function that less than 999 lines

Notes: Accessing statements in blocks (e.g. while block) may cause problems.

6.1.7 Skip statement (JUMPOVER)

This is a run command, which causes the debugger to ignore the current and con-
tinue with the next statement. This might be a statement in the current expression
or in the calling expression.

Syntax:
 jumpOver|o

- 39 -

6.1.8 Leave function (FINISH)

This command causes the debugger to stop at next statement in the calling func-
tion or at the next break point.

Syntax:
 finish|fi

6.1.9 Continue application (CONTINUE)

This is a run command, which causes the debugger to run the application until the
next break point.

Syntax:
 continue|c

6.1.10 Run application (RUN)

This is a run command, which causes the debugger to run the application without
stopping at break points any more. The debugger will still stop in case of errors.

Syntax:
 run|r

6.1.11Terminate debugging (QUIT)

This is a debug command, which immediately terminates the application. When
running the debugger under OShell, it does not terminate the OShell, but the de-
bugger, only.

Syntax:
 quit|q

- 40 -

6.1.12 Change stack limit (STACKLIMIT)

The function changes the stack limit to the passed number. When no number has
been passed, the current stack limit will be displayed.

Parameters:

• number - stack limit to be used

Syntax:
 stackLimit|sl [number]

Examples:
 sl 200 // limit stack frames to 200
 sl // show stack limit

- 41 -

6.2 Information commands

Information commands provide additional information about the process state.

6.2.1 List call stack (BACKTRACE)

The command displays the current call stack beginning with the last called

OSI function. It shows all stack frames, or last COUNT frames.

Passing a negative COUNT argument, stack frames above COUNT frames are
displayed.

Parameters:

• count - maximum stack frames to be displayed

Syntax:
 backtrace|bt [count]

6.2.2 Change stack frame (FRAME)

The function changes the stack frame to a stack level shown in the back trace list.
After changing the frame, local variable in the frame selected may be inspected.
Not passing a frame number or 0 resets the frame to the current stack level. Pass-
ing an invalid frame number does not change the frame.

Parameters:

• number - stack level number to be activated

Syntax:
 frame|f [number]

Examples:
 frame 2 // activate fram on stack level 2
 frame // reactivate current frame

- 42 -

6.2.3 List function (LIST)

The command lists the current function or the function passed in fname. In order
to list functions stored in external source files, those have to be loaded before (e.g.
by calling LOAD).

Parameters:

• fname - function name for the function to be listed. The function is
searched in the current context, i.e. the currently selected data type and
its base types.

• class - In order to list functions in a different class, the function name has
to be scoped.

Syntax:
 list|l [[class::]fname]

Examples:
 l // list current function
 l Print // list function Print of current class or base types
 l 'Person::Print' // list function Print defined in Person class or
 // it's base types. Scoped names have to be quoted.

6.2.4 List current line (LISTCURRENT)

The command lists the line with the current statement.

Syntax:
 listCurrent|lc

- 43 -

6.2.5 Define watch variable (WATCH)

The command defines a watch expressions for the current OSI function. Watch ex-
pressions may be defined as operation path, property name, parameter or local or
global variable. When an expression return a complex data type, all attribute val-
ues for the complex data type are displayed. When expression is an operation
path, the operation result will be displayed Watch variables are displayed always
when a break point within the OSI function is reached.

Calling the function without expression will show all active watch expressions.
Watch expressions can be removed by calling dw or deletewatch.

Prameters:

• expression - variable, operation path or expression to be evaluated")

Syntax:
 watch|w [expression]

Examples:
 w first_name // display 'first_name' value for selected instance
 w parm1.name // display the 'name' attribute of parameter 'parm1'
 w myFunction // display the result of calling myFunction

6.2.6 Delete watch expression (DELETEWATCH)

The command allows deleting a watch expression defined within the context of the
current OSI function. When passing a number, the watch expression at corre-
sponding position is deleted. Positions are listed when calling watch without pa-
rameters. When passing an expression (e.g. variable name), the corresponding
watch expression will be removed.

Parameters:

• number - Position of watch expression in the watch list
• expression - Watch expression set by a watch command.

Syntax:
 deletewatch|dw number|expression

Examples:
 dw 2 // Delete watch expression at position 2
 dw name // Delete watch expression 'name'.

	1 Introduction
	2 Process flow control commands
	2.1 Run command block and reset state (BEGIN)
	2.2 Run command block and keep state (DO)
	2.3 Terminate command block (END)
	2.4 Leave block (LB)
	2.5 Return from procedure (RETURN)
	2.6 Quit application (QUIT)
	2.7 Exit application (EXIT)
	2.8 Pause process (PAUSE)
	2.9 Conditional execution (IF)
	2.10 Do while condition is true
	2.11 Do for all instances in current collection (FA)
	2.12 Call procedure file (CALL)

	3 Common OShell Commands
	3.1 Display command help (HELP)
	3.2 Load procedure file (LOAD)
	3.3 Set option variable (SET)
	3.4 Redirect OShell output (REDIR)
	3.5 Echo command input (ECHO)
	3.6 List data sources (LD)
	3.7 Change data source (CD)

	4 OShell data source commands
	4.1 List extent names (LCN)
	4.2 Change collection (CC)
	4.3 Run OSI statement(s) (OSI)
	4.4 Display formatted data (FORMAT)
	4.5 Execute database context action (DATABASEACTION)
	4.6 Execute object space context action (OBJECTSPACEACTION)

	5 OShell data collection commands
	5.1 Collection list commands
	5.1.1 List collection property names (LCN)
	5.1.2 List attribute property names (LAN)
	5.1.3 List keys (LK)
	5.1.4 List order keys (LO)
	5.1.5 List instances (LI)
	5.1.6 Show attribute or expression values (PRINT)
	5.1.7 Set attribute list (SAL)

	5.2 Collection settings
	5.2.1 Change sort order (CO)
	5.2.2 Set filter condition (SF)

	5.3 Collection manipulation commands
	5.3.1 Locate instance (LOC)
	5.3.2 Position forward (NEXT)
	5.3.3 Position backward (PREV)
	5.3.4 Create instance (CRT)
	5.3.5 Copy instance (CPY)
	5.3.6 Move instance (MOV)
	5.3.7 Delete instance (DEL)
	5.3.8 Set attribute value (SAV)
	5.3.9 Execute property action (PROPERTYACTION)
	5.3.10 Execute instance action (INSTANCEACTION)

	6 Debug commands
	6.1 Debug commands controlling execution
	6.1.1 Set break point (BREAK)
	6.1.2 Reset break point (DISABLE)
	6.1.3 Break at each statement (BREAKALWAYS)
	6.1.4 Execute next statement (N)
	6.1.5 Step into function (STEP)
	6.1.6 Go to line (JUMP)
	6.1.7 Skip statement (JUMPOVER)
	6.1.8 Leave function (FINISH)
	6.1.9 Continue application (CONTINUE)
	6.1.10 Run application (RUN)
	6.1.11 Terminate debugging (QUIT)
	6.1.12 Change stack limit (STACKLIMIT)

	6.2 Information commands
	6.2.1 List call stack (BACKTRACE)
	6.2.2 Change stack frame (FRAME)
	6.2.3 List function (LIST)
	6.2.4 List current line (LISTCURRENT)
	6.2.5 Define watch variable (WATCH)
	6.2.6 Delete watch expression (DELETEWATCH)

