

01101001001110010101
10101101010010111011
10001011101010101011
10110010100101011010
10101001101011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101

run

Documentation

ODABA
NG

- 2 -

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, October 2012

 - 3 -

Content

Introduction ... 5

User's Guides .. 6

1.1 ODABA User's Guide .. 7
1.1.1 Using ODABA ... 8

1.2 Model definition ...12
1.2.1 Schema definition ..13

1.3 Database access in C++ ...14
1.3.1 Creating Handle hierarchy ..15
1.3.2 Access by data source ..21
1.3.3 Accessing data ..25
1.3.4 Advanced property handles ..60
1.3.5 Buffered Access (buffer mode) ...87
1.3.6 Property handle cache ..89
1.3.7 Client/server configurations ...90

1.4 Special Features ...91
1.4.1 Object Identities ..92
1.4.2 Versioning ...94
1.4.3 Copy model ...101
1.4.4 Check model ...102
1.4.5 Recovery log-file ...103
1.4.6 Workspace ..104
1.4.7 License services ..105

1.5 Locking and write protection ...106
1.5.1 Locking Features ...107
1.5.2 Write protection ...108

1.6 Transactions ..109
1.6.1 Starting and committing user transactions110
1.6.2 Starting and committing workspace transactions....................111

1.7 Database context programming ..112
1.7.1 Associate context class with data model resource113
1.7.2 Handling events ..114
1.7.3 Providing actions ...118

1.8 Data exchange ..119
1.8.1 Data exchange definition ...122
1.8.2 Data Exchange schema ..127
1.8.3 External data formats ..133

1.9 ODABA data storage formats ..139
1.9.1 Storing ODABA data in relational databases140

- 4 -

1.9.2 XML database ...147

1.10 Internet Communication Engine ..148

 - 5 -

Introduction

ODABA2 ODABA2 is an object-oriented database system that
allows storing objects and methods as well as causali-
ties. As an object-oriented database, ODABA2 supports
complex objects (user-defined data types), which are
built on application relevant concepts.

ODABA2-applications are characterised by a high flexi-
bility that is achieved by supporting in addition to object
(concept) hierarchy, multifarious relations between ob-
jects (master and detail relations, relations between in-
dependent objects and others). This way conditions and
behaviour of objects in the real world can be represented
considerably better than in relational systems.

ODABA2-applications cannot only be drawn up as
event-driven applications within the field of the graphical
surface but also at the database level. This is one more
way in which the application design is very close to the
problem.

This makes ODABA2-applications a favourite possibility
to solve highly complex jobs as come up in administra-
tive and knowledge areas.

Platforms ODABA2 supports windows platforms (Win-
dows95/98/Me, Windows NT and Windows 2000) as well
as UNIX platforms (Linux, Solaris).

You can build local applications or client server applica-
tions with a network of servers and clients.

Interfaces ODABA2 supports several technical interfaces:
 C++, COM as application program interface (this

allows e.g. using ODABA2 in VB scripts and ap-
plications)

 ODBC (for data exchange with relational data-
bases)

 XML (as document interface as well as for data
exchange)

User Interfaces ODABA2 provides special COM-Controls that easily al-
low building applications in Visual Basic. On the other
hand ODABA2 provides a special ODABA2 GUI builder.

- 6 -

User's Guides

In contrast to reference manuals, the user's guide discuss typical programming
patterns and specific programming or development situations.

 - 7 -

1.1 ODABA User's Guide

This document describes different ways for modeling and accessing an ODABA
database. Moreover, it describes the way of using special features as workspaces
or transactions.

The document is not describing the details of functions, which are given in the ap-
propriate reference manuals. It describes rather the way of using certain features
by means of typical examples.

The document is rather new, but we found it important to add a document of this
kind. Even though it is not ready yet, it might be a useful help in many situations.

- 8 -

1.1.1 Using ODABA

Running ODABA applications is relative simple. ODABA programms need not to
register. They are just moved to a folder and started. Databases will be created on
demand, when not yet existing.

Hence, the only activity left after installtion for starting a database application is
preparing a configuration or ini-file containg information about database locations,
which are usually not hard coded in the application database.

Application calls usually refer to a configutation or ini-file that defines necessary
options as database locations,server connections etc.

Options in database applications

Most ODABA applications are referring to a configuration or ini-file in order to load
actual option values. Moreover, ODABA provides an option dialog, which allows
storing options in the application database.

Options are considered as thread global variables, i.e. each thread running has its
own set of options. This allows changing option values in one thread without af-
fecting other threads.

Options are supported in many places in th database system in order to increase
flexibility of applications and programs. Thus, you may refer to options in

file paths

OSI expressions

application programs

and many other places. You may create your own options in your application or
refer to options defined in ODABA.

Option values are searched in the following hierarchical order.

First the options set internally by the application are checked.

When not being found, the option is searched in the configuration or ini-file as-
sociated with the application.

When not being defined in the ini file, the options is requested from the applica-
tion settings via the application context function BaseContext::option() (sup-
posed, an application context has been set (setApplicationContext()).

When the option name is a simple name, it is searched in addition in the system
environment as environment variable.

 - 9 -

Option values not yet defined are created automatically and set to "". Thus, each
option does exist by definition and returns a value, which might be empty.

File path options

Database paths but also most file path to external files opened in an ODBA appli-
cation (e.g. locations for import or export) may contain option references
(%sym_name%). Those references are resolved before opening the file. A file
path may contain any number of option references.

When the file is opened on the server, optons must have been defined on the
server side.

// the ini-file defines PROJECT_ROOT, e.g.as

// PROJECT_ROOT=C:/odaba/my_projects

// now, tha database path can be referred to as:

%PROJECT_ROOT%/database.dat

Referring to options in expressions

OSI expressions may refer to option variables. You may get but also set option
values in an expression. Whithin an expression, you may refer to option variables
as to normal expression variables, except, that they must be enclosed in %...%.

Referring to undefined option variables returns an empty string.

Options in expressions are typically used in order to define variable or generic ex-
pressions, which depend from one or more variables set at runtime.

void main () {

 %PROJECT_ROOT% = 'c:/odaba/my_projects'; // set option

 ::Message('Value for PROJECT_ROOT is: ' + %PROJECT_ROOT%);

}

Accessing options from whithin a program

In an application, one may retrieve option values by calling option(). In order to set
or change an option value, setOption() can be called.

 setOption("PROJECT_ROOT","c:/odaba/my_project");

 printf(option("PROJECT_ROOT"));

- 10 -

Option hierarchies

Typically, options are arranged in a two level hierarchy. The first level corresponds
to the section in an ini-file. The second level refers to variables defined for this
section.

After options became widely used in applications, additional leves became neces-
sary. When refering to an xml-configuration file, any level of nesting option varia-
bles becomes possible. Moreover, each option may have got a value (which is not
possible for sections in an ini.file.

Options under the main section or option, which has got the name MAIN or the
name of the program executed, are considered as level 0 options as well as sec-
tion names in an ini-file. Options below other section in the configuration or ini-file
are considered as level 1 and higher options.

Option path

I order to access options on higher levels in an program or expression, option
paths can be defined, which describe a hirarchy path for the option. Option path
can be referred to wherever an option value is required, i.e. instead of simple
names, you may refer to an option path e.g. within an OSI option variable or file
path.

There is no limit for the number of level, but one should not exceed 3 or 4.

In order to support option hierachies with a level greater than 1 in ini-files and envi-
ronment settings, too, option names in ini-files and environment settings may con-
tain option paths as well.

// ini-file

[DATA_SECTION]

DICTIONARY=c:/odaba/my_projects/sample.dev

DICTIONARY.TYPE=ODABA

// OSI expression

 ::Message("dictionary type is: "+%DATA_SECTION.DICTIONARY.TYPE%);

 - 11 -

Database path

A database path refers to the location of the root base for the database. Paths can
be defined as absolute or relative paths, or as reference path containing symbolic
references enclosed in %% (%sym_name%).

Symbolic path references are resolved by replacing corresponding option values
defined in the application or main option section in a configuration or ini-file. When
running local or file server applications, symbolic names in the path must be de-
fined on the local machine. When running a client/server application, the database
file path is passed to the server and symbolic variables are resolved (and must be
set properly) on the server side.

Option settings

Options can be set in different places. Primary options are read from the configu-
ration or ini-file. Some applications (e.g. most ODABA system applications) add
option values defined in the database (user specific option settings). Options, taht
have neither been found in the configuration or ini-file nor in database user set-
tings, are read from the system environment.

Finally, options can be set in the application (OSI expressions or implemented
functions).

When an option has been det once, it remains until it si changes by the applica-
tion, i.e. changes in the configuration or ini-file or in database setting will not apply
automatically.

In order to refresh settings (e.g. applying updated user settings in the database)
the application has to refresh options explicitly (e.g. by reading updated options
and setting those).

- 12 -

1.2 Model definition

Model definitions can be provided for the data model, the dynamic model and the
functional model. All models can be defined in terms of ODL definitions, XML
schema or in the Class Editor.

The most comfortable way is the Class Editor, but sometimes, ODL definitions or
XML schema might be a better choice.

In this chapter, we will discuss certain ways of defining model elements by using
ODL, because it is a simple way of referring to examples.

 - 13 -

1.2.1 Schema definition

A schema definition includes definitions for all three models the database model
consists of. When defining a schema in ODL, the dictionary path must be passed
as value for the DICTIONARY keyword or as parameter to the ODL utility when
loading the schema.

A schema is stored in dictionary or resource database as project. Projects may
form hierarchies, i.e. a schema may consist of any number of sub-schemata. On
the other hand, each schema forms a module, which may have sub-modules
again.

Since each schema is a module by definition, an explicit module definition is not
required. Modules are namespaces and may consist of any number of subordinat-
ed namespaces. Again, explicit namespace definitions are not required for a mod-
ule or schema (project), since each schema or module is a namespace.

// location for resource database

DICTIONARY = 'c:/ODABA2/Sample/Sample.dev'; // sample resources

UPDATE SCHEMA Sample {

// definition of schema resources

}

- 14 -

1.3 Database access in C++

This chapter explains the necessary steps for accessing a database in C++ pro-
grams. This is similar to accessing the database from other programming lan-
guages as C# (.NET interface) or PHP (ICE interface). Only the syntax differs
slightly according to the specific program language requirements.

Accessing databases from within OSI is different, because OSI provides direct
access to database variables. This is described in detail in "ODABA Script Inter-
face".

Accessing a database is possible by creating a hierarchy of access handles on 6
levels or by referring to an externally defined data source. Here, we will consider
the more particular way of creating handle hierarchies before discussing the data
source concept, which provides a more generic way for accessing a database.

 - 15 -

1.3.1 Creating Handle hierarchy

For getting access to database details you may open a hierarchical structure of
database access objects:

Client

Dictionary

Database

[ObjectSpace]

Property

Value

Each of those access handles can manage any number of subordinated access
handles, i.e. you may several databases for the same dictionary etc. The object
space handle is required only, when you are working with multiple object space (or
multiple universe) databases. Object space handles must be created also, when
you are running transactions on the same database in different threads.

Handle hierarchies correspond to physical application resources, which are man-
aged by the resource specific objects referenced by the handle:

 CClient - Server connection

 DDictionary - Resource database

 DDatabase - Database

 DDBObject - Universe/transaction

 PProperty - Instance/collection

 VValue - Value

The example below shows how to get access to persons in the sample database.

 Dictionary sam_dict(mainClient(), "Sample.dev", PI_Read, true);

 Database sam_database(sam_dict, "Sample.dat", PI_Read, true);

 Property persons(sam_database, "Person", PI_Read);

 while (persons.next())

 printf(persons.valueString("name"));

- 16 -

Database application

When running a database application, an application environment is created im-
plicitly in order to make global resources available for database functions. The ap-
plication manages several system resources, which can be defined in different
sections of a configuration or ini-file:

SYSTEM - System resource database (contains e.g. error messages)

CACHE - initialize server or application cache settings (optional)

FILE-CATALOGUE - defines file locations for symbolic file names (optional)

DATA-CATALOGUE - defines data sources in a database (optional)

In order to initialize these resources, i.e. in order to make system errors and data
catalogs available, odaba::initializeApplication() might be called with a configura-
tion or ini-file. The function client will initialize the system resources from defini-
tions passed in the configuration file. The application registers the process and
activates the error log-file. It opens the system database for providing error mes-
sages and the data catalog. System resources are initialized once, only, and will
be closed when leaving the application or when shutting down the application ex-
plicitely (shutDownApplication()).

Default system and catalog sections are defined in the ODABA.INI file that is
stored in the ODABA installation path. The system section should always refer to
the odaba.sys database. This might be located on a server, in which case the data
source has to provide connection information (server name and port). In order to
provide an application specific data or file catalog, application specific settings can
be defined in the configuration file passed to the application.

The system database is opened automatically, when the configuration file passed
to initializeApplication() contains a SYSTEM section or an appropriate top option
element has been defined in the configuration file. When the system database is
not opened, the application still runs fine, but system errors are written to the error
log-file without explanatory test.

When running the SYSTEM database from a server, the main client automatically
connects to the server with the system database (odaba.sys). When this connec-
tion refers to the same server as other data sources, the application should use
the main client in order to connect to other databases.

Client Handle

The first you need to create an access handle hierarchy is a Client handle. The
client handle guarantees the scalability for ODABA applications, since just by con-
figuring the client in different ways, you may run your application as local, file
server, object server or as replication server application.

 - 17 -

The configuration of the client/server mode for the application is provided in a con-
figuration file (traditional ini-file or xml option file) or in a data catalog. Details about
defining data sources are described in the "Database Reference" manual.

Most applications work with one client, which is required only, for opening the dic-
tionary handle(s). Complex client/server applications communication with different
databases on different servers may, however, require several client objects. Sev-
eral client objects might also become necessary, when running multiple thread
applications in order to provide a separate server connection for each thread.

There is a big difference between client handle and a client object. The client han-
dle is not much more than a managed pointer to a client object. Thus, many client
handle may refer to the same client object. ODABA tries to minimize the number of
client objects, i.e. the number of connections to the server. Simple applications
use one client object only, which is called the system client. Multiple connection
applications will implicitly create a number of client objects managed by ODABA..
But when the application becomes very complex concerning the connections to
different servers, the application may implement their own client manager.

Empty client handle

When scalability is not requested and the application is able to obtain database
location information from other sources, you may refer to the main client handle.

When referring to the main client, DataSource::open() will not work, unless you
initialize the client explicitly, since no data source reference has been defined for
the client handle.

Empty main clients need not explicitly connect to the database, when running in
local or file server access mode. Running, however, in client/server mode, empty
client handles must be connected explicitly to the server.

// empty client handle opens local dictionary

 ODABAClient client();

 DictionaryHandle dict(client, "C:/ODABA/Sample/Sample.dev",

PI_Read, true);

// empty client handle opens server dictionary

 ODABAClient client();

 client.Connect("my_server", 6123);

 DictionaryHandle dict(client, "%SAMPLE_DICT%", PI_Read, true);

Scalable client handle

When running an application in client/server mode, each client can manage maxi-
mum one connection to a server. Thus, when running an application communi-
cating with several servers, several clients must be created. Each server connec-

- 18 -

tion allows accessing any number of dictionaries or databases provided on the
server.

Scalable (initialized) client handles can be created also by constructing an empty
client and initializing it.

Scalable clients work fine in local and client server mode as long as all data
sources requested by the application are running locally or on the same server. A
client may serve at the same time local or file server data sources, but not data
sources residing in different servers.

For handling different servers or multiple server connections, you need a client
handle for each server connection.

// scalable client handle

 ODABAClient sam_client("c:/ODABA/Sample/Sample.ini", "Test

Application");

Initialize client explicitly

When a main client had been created, the client can be initialized later on by call-
ing Client::reopen(). The client must be initialized before opening a data source or
connecting to a database. Initializing a client should not be done while the client is
connected, but initialization can be re-done, after the client has been disconnect-
ed.

Initialized clients need not explicitly connect to the database (server). The connec-
tion is established automatically, when opening the first data source for the client.

 ODABAClient client();

 ...

 client.Initialize("c:/ODABA/Sample/Sample.ini", "Test

Application");

Multiple server connections

When referring to data source definitions defined in a data catalog or in an config-
uration file, the application need not care about server connections or local data-
base access.

More complex applications requesting databases from different servers need an
own connection management in the application or a well-organized set of configu-
ration files. Since configuration files keep the application free from knowing any-
thing about the client/server mode, this is the suggested way to handle multiple
server connections.

One could create a client for each data source requested in the application, but
when the application accesses several data sources residing on the same server,
it is more efficient, using only one connection for all this data sources. The best

 - 19 -

way is to put all data sources for one server in the same configuration file and cre-
ating a client for each configuration file. Still the application needs to know, which
data source is defined in which configuration.

Instead trusting the automatic connection feature of the client handle, you may
manage the server connections by your own in the application.

// connection manager (draft)

bool openConnection(DataSourceHandle &dsh, ClientPool &cp) {

 Client *current_client = 0;

 if (!(current_client = cp.Locate(dsh.server_name))) {

 current_client = new Client();

 if (current_client->connect(dsh.server_name, dsh.server_port)

) {

 printf("server %s(%i) not accessable", dsh.server_name,

dsh.server_port);

 delete current_client;

 current_client = NULL;

 } else {

 cp.AddClient(dsh.server_name, current_client);

 dsh.Open(*currentClient);

 }

 }

}

Main client

The first client created in an ODABA application is considered to be the main cli-
ent. The main client handle is used, whenever a client handle is required but not
set or passed explicitly.

When initializing the application by calling odaba::initializeApplication(), teh main
client is automatically created for connectin the SYSTEM data source. When the
dara source refers to a database on a server, the main client automatically con-
nects to this server.

Otherwise, the main client is created implicitly when creating the first Client object.
The main client can be provided simply by calling odaba::mainClient(). Creating a
default data source (without client reference), the data sourec uses the main client.
When no main client has been created so far, calling mainClient() will automatical-
ly create one.

-

- 20 -

Using Dictionary Handle

Using Database Handle

Using database object space handle

Property handle

A property handle is used to access data for a defined property. A property could
be a collection of data (instances or elementary values) but also a single value. A
property handle provides methods to navigate within the property as well as meth-
ods for reading and updating the property content.

Detailed description of property features you can find in the Property Handle Class
Reference.

Value handle

 - 21 -

1.3.2 Access by data source

Usually, databases can be opened by [creating or opening a client handle], creat-
ing a dictionary handle and creating/opening a database and object space handle.
Database locations have to be passed to those functions, which is simple but re-
duces flexibility of the program.

Accessing the database via predefined data source provides more flexibility to the
application. There is still a client object required, but the location for database and
dictionary can be provided externally in a data catalog or in an ini-file.

The example below shows, how to open the Sample database data source defined
in the "sample.ini" configuration file. The section in the configuration file (or xml
element in an xml configuration file) must have got the name referred to as data
source name in the openDataSource() function ("Sample"). Details for defining
data sources are described in the "Database References" manual.

The example below illustrates two ways of accessing (opening) a data source. The
first opens a database fith fixed parameters defined in the program. The second
shows one way of opening the same database but controlled by options defined in
an ini-file.

// open static resources

 Dictionary dict("c:/odaba/sample/sample.dev");

 Database base(dict,"c:/odaba/sample/sample.dat",Write);

// open data source parametrized in an configuration or ini-file:

// [Sample]

// DICTIONARY=c:/odaba/sample/sample.dev

// DATABASE=c:/odaba/sample/sample.dat

// ACCESS_MODE=Write

// NET=YES

 ObjectSpace base;

 base.OpenDataSource("Sample.ini", "Sample", Write);

Data source properties and option names

Data source properties can be initialized from options set in a section of a configu-
ration or ini-file or from data source definitions in a data catalog. Within a configu-
ration file, data source properties must be defined in a section with the data source

- 22 -

name ([datasourceName]). Data source properties are initialized from following
options:

serverName: REPLICATION_SERVER or SERVER_NAME

serverPort: SERVER_PORT (6123)

connectionName: CONNECTION_ID

This variables define data source connection parameters, which are required for
for object or replication server clients, only.

dictionaryPath: DICTIONARY

dictionaryType: DICTIONARY.TYPE (ODABA)

This variables define the dictionary database. This dictionary path is mandatory.
The value may refer to a server variable that defines the path on the server. Serv-
er variables must be enclosed in % characters (e.g. %DICT_PATH%).

databasePath: DATABASE

databaseType: DATABASE.TYPE (ODABA)

This variables define the database to be opened. The path may refer to a server
variable that defines the path on the server. Server variables must be enclosed in
% characters (e.g. %DB_PATH%).

accessMode: ACCESS_MODE (Read)

This variable has to be defined in order to accessing a database in write mode
(Write).

sharedDatabase: NET (NO)

When opening a data source in local or file server mode (no server defined) this
option can be defined in order to share the database with other applications.

enableContext: ENABLE_CONTEXT (YES)

This option allows deactivating the database context defined for the project, i.e.
disabling logical consistency or busines rules defined by the application. This is
useful e.g. for maintenance or reorganisation processes.

onlineVersioning: ONLINE_VERSION (NO)

This option activates online-versioning in order to update instances to next higher
schema version, when the database schema has been changed. When not using
online version feature the database has to be reorganized before a new schema
version can be used.

databaseVersion: VERSION

Version number for the object space or database, when the database or object
space should be opened with an older (not the current) version. When no version

 - 23 -

number is passed, the object space or database will be opened with the current
version.

schemaVersion: SCHEMA_VERSION

Schema version has to be set in order to open the database for an older schema
version (not the latest version) of the dictionary. When no schema version is
passed, the database will be opened with the latest schema version.

objectSpaceName: OBJECT_SPACE

The name of an object space must be specified in order to access a sub object
space in the database is to be opened.

accessPath: ACCESS_PATH

An access path to a collectin can be defined in order to refer to a collection instead
to a database or object space.

resourceType: RESOURCES.TYPE (ODABA)

This variable defines access options for a resource database optional). When re-
sources are stored in a database different from the dictionary, those can be made
available using the resource database.

workspacePath: WORKSPACE

When the workspace feature is enabled for the database, a workspace can be
defined as active workspace for the data source by passing a workspace name or
a workspace path.

typeName: DATA_TYPE

The data type name is used in some cases for performing metadata operations
(e.g. copying a data type definition to another dictionary). It is has no direct influ-
ence on the data source but can be retrieved by the application.

Alternatively to the ini-file definitions tha data source can be described in a data
catalog. In this case you may refer to the data source name defined in the data
catalog, instead defining the data source in a configuration file.

dataSourceName: DATA_SOURCE

The data source name refers to the data source to be opened. Usually this is the
same name as the data source name passed to the function, but it is also possible
to refer to another name in this place.

Additional options can be passed in the configutation file, which are not stored in
the data source handle.

XS_NAMESPACE

Location for the xml database schema (application schema), when running ODA-
BA as an xml database. The schema location can be local or a WEB URL.

- 24 -

OXS_NAMESPACE=odaba_schema_location

Location for the odaba shema definition (system schema), which has several ex-
tensions to the xml schema definition. The schema location can be local or a WEB
URL.

[DataSource1]

; Data source

ODABA_SERVER=SRV008(6123)

DICTIONARY=%BridgeDict%

DATABASE=%BridgeProduction%

EXTENT=ClassificationVersion

ONLINE_VERSION=YES

ACCESS_MODE=Write

NET=YES

 - 25 -

1.3.3 Accessing data

In program environments as C++, .NET, JAVA or PHP, access to data is managed
by property handles. Property handles provide the lowest level in the access hier-
archy.

Property handles can be used for accessing persistent data as well as transient.
You may use property handle for iterating through a collection, but also for access-
ing an elementary value in an object instance.

For reading, creating, updating or deleting data, property handles are required as
well. Besides simple data manipulation functions, property handles allow locking
instances, support event handlers and transactions, provide data conversion,
metadata and many others.

This chapter explains the basic functionality required for accessing data in a
ODABA database. Advanced features are described in the next chapter and de-
tails about how to use property handles in details are described in the class refer-
ence.

How property handles work

Property handles form a hierarchical structure, where each property handle repre-
sents a property (attribute or reference) in an instance hierarchy. A property han-
dle contains a pointer, which points to (property) node in a property handle hierar-
chy. Property nodes, which are referred from the property handle, provide in-
stance, cursor and metadata functionality.

Property handles can be constructed or opened. It does not make any difference
for the property handle, how it has been created. Since a property handle is noth-
ing else than a pointer to a property cursor, which handles collections and selected
instances, constructing or opening a property handle just provides a property node
pointer in the property handle.

For most constructor functions there are similar open functions.

For accessing data, property handles provide instance and cursor functionality.
This functionality follows some basic rules, which has to be taken into account,
when navigating in property handle hierarchies.

- 26 -

Property handle hierarchies

Property handles can be opened in a hierarchical order as shown below. The top
property handle must be opened with a database object handle as parent. Subor-
dinated property handles are opened with a property handle as parent. Each prop-
erty handle can be the parent of any number of subordinated property handles.

Considering a Person object in the sample database, you will find the children
property. Since the children property refers to a collection of Persons, again, per-
sons in the children collection may have children, too.

Property handles opened in a hierarchical order, as shown below, will always re-
flect exactly one path through the instance tree defined by the reference properties
in the hierarchy. I.e. selecting a person in the top person property handle creates
the set of children for the subordinated children property handle. Changing the
selected instance in the top property handle person, automatically changes the
collection represented in the subordinated children property handle to the set of
children for the newly selected person on top.

Selecting a person in the children property handle will immediately provide a set of
grand children in the lowest property handle, i.e. the children of the child selected
from the set of children for the top most person.

void OpenHandleHierarchy (DBObjectHandle &dbo) {

 PropertyHandle person(dbo,"Persons",PI_Read);

 PropertyHandle children(person,"children");

 PropertyHandle grand_children(children,"children");

 ...

}

 - 27 -

Instance functionality

A property handle provides instance functionality for the instance currently select-
ed in the property handle. Instance functionality allows reading or updating in-
stance attributes or accessing instances in a subordinated property handle.

void AccessAttributes (PropertyHandle &person) {

 PropertyHandle name(&person,"name");

 PropertyHandle pid(&person,"pid");

 person.Get(0); // select first instance

 pid = "00000"; // set person id value to 00000

 name = "Miller" // set person name to Miller

 printf("Person ID: %s",pid.GetString());

}

- 28 -

Cursor functionality

The property handle provides cursor functionality besides instance functionality.
This means, besides accessing properties in the selected instance, you may use
the cursor functionality for selecting another instance or iterating through the col-
lection represented by the property handle.

void Iterate (PropertyHandle &person) {

 person.ToTop();

 while (person.Next())

 printf("Person ID: %s", person.GetString("pid"));

}

 - 29 -

Access requirements

Supposed all specifications you made for a property handle hierarchy are correct,
there are some additional important rules to be taken into account when accessing
properties in a hierarchy.

A property handle is accessible only, when it is the top property handle in a hi-
erarchy or when the parent property handle is positioned or contains an ini-
tialized instance (instance selected).

When changing the selection in a property handle, all subordinated property
handles become unselected.

When a property handle becomes unselected, all subordinated property han-
dles become inaccessible.

When selecting an instance in a property handle opened in write mode
(PI_Write), the instance is locked (pessimistic write lock). When this is not
possible, because the instance is locked by another property handle or ap-
plication, the instance can still be selected, but is accessible read-only.

When selecting an instance in a property handle opened in update mode
(PI_Update), selected instances are locked (optimistic write lock). When
saving changes from the instance, conflicts will be detected when existing.
In case of a conflict the application can decide whether to discard the cur-
rent changes or throwing away the changes made by the other application
or property handle. We suggest, always to discard the changes made on the
currently selected instance.

There are other rules described later on, but those are the most important ones.

- 30 -

Property handle macros

Since open property handle is an activity frequently required in application pro-
gramming, the are some macros provided for making life easier:

PH - Property handle constructor have the same name as the property name

PHN - Property handle constructor, where the property handle name may differ
from the property name

GPH - GetPropertyHandle

The rules for creating handle copies and cursor copies are the same, i.e. passing
a property handle pointer to the macro will create a handle copy and passing a
property handle will create a cursor copy.

void OpenHandleHierarchy (DBObjectHandle &dbo) {

 PropertyHandle person(dbo,"Persons",PI_Read);

 PropertyHandle *pchildren;

 // PropertyHandle children(person,"children");

 PH(person,children);

 // PropertyHandle grand_children(children,"children");

 PHN(person,children,grand_children);

 // pchildren = person.GetPropertyHandle("children");

 pchildren = person.GPH("children");

 ...

}

Opening access handles

Property handles form a hierarchical structure, where each property handle repre-
sents a property (attribute or reference) in an instance hierarchy. The top property
handle must be opened with a database object handle as parent. Subordinated
property handles are opened with a property handle as parent.

 - 31 -

Considering a Person object in the sample database, you will find the children
property. Since the children property refers to a collection of Persons, again, per-
sons in the children collection may have children, too.

Accessing data is possible via generic or typed property handles. Generic property
handles provide more control for database access and are save against database
model changes. Typed property handles perform a little bit better than generic
ones, but provide less control and require re-compilation when changing the data-
base structure. Practically, we do not use typed property handles, since it has
turned out, that generic property handles are more stable and provide additional
support as update control and data conversion.

void OpenHandleHierarchy (ObjectSpace &os) {

 Property person(os,"Persons",PI_Read);

 Property children;

 children.open(person,"children");

 Property grand_children(children,"children");

 ...

}

- 32 -

Constructing property handle

Constructing a top property handle creates a new property handle with a pointer to
the property node in the property hierarchy tree. In most cases, it constructs an
empty property handle, which is opened in the constructor. Thus, instead of calling
a constructor, you may also call the Open() function with an appropriate parameter
list.

A valid property handle can be constructed only, when the parent handle (DBOb-
jectHandle or PropertyHandle) is valid. Otherwise, just an empty property handle
without property node reference will be created.

 void ConstructHandleHierarchy (rObjectSpace &os) {

 Property person(os,"Persons",PI_Read);

 Property children(person,"children");

 Property grand_children(children,"children");

 ...

}

 - 33 -

Open property handle

The difference between opening and constructing a property handle is not rele-
vant. Opening a property handle, however, can be performed any number of
times.

You may open a property handle several times. Always when opening a property
handle, the currently opened handle will be closed. Since open returns an error
when failing, you may immediately check the success of the open function, in
which case the function returns false (no error).

To open a property handle successfully requires a valid parent handle (DBObjec-
tHandle or PropertyHandle).

void OpenHandleHierarchy (Objectspace &os) {

 Property person;

 Property children;

 Property grand_children;

 if (!person.Open(os,"Persons",PI_Read))

 if (!children.Open(person,"children"))

 if (!grand_children.Open(children,"children");

 ...

}

- 34 -

Typed property handle

So far, generic database access has been discussed. In contrast to generic prop-
erty handles, types property handles provide direct access to instance data in the
context of a C++ class definition. Typed property handles are supported via tem-
plate classes. Instead of referring to the selected instance in the property node,
the application may directly refer to instance properties returned by the template
class.

When using typed property handles, the system will not be informed about in-
stance modifications and the application program has to signal updates explicitly.
Moreover, no data conversion will be performed and has to be managed by the
application program as well.

Another disadvantage is, that you must not define virtual functions for types used
in typed property handles, since the ODABA instance factory does not create vir-
tual function vectors.

Hence, we suggest always using generic property handles rather than typed prop-
erty handles.

// using typed Property Handles

 PI<Person> persons(obh, "Person", PI_Write");

 while (persons.Next())

 if (persons.Get()->UpdateAge())

 persons.Modify();

// Update function as implemented in the Person Class

bool Person::UpdateAge() {

 int old_age;

 dbdt current;

 current.SetDate();

 age = birth_date.Year() - current_year;

 return (age != old_age);

}

// using generic property handles with update control

 Property persons(os, "Person", PI_Write");

 - 35 -

 Property birth_date(&persons, "birth_date");

 Property age(&persons, "age");

 Date current;

 int year = current.setDate().Year();

 while (persons.Next())

 age = year - birth_date.GetDate().Year();

- 36 -

Copy property handles

When creating copies of a property handle, a copy can be created on the node
level or on the handle level. A node copy creates a new and independent property
node for the same property. A handle copy creates a new property handle, which
shares the property node with its origin, i.e. original and copy handle always refer
to the same property node and the state of the property handles is identical.
Whatever is selected in the property handle p1 (see example HandleCopy() below)
is selected in the property handle person, which refers to the same property node
as p1.

Property nodes have got a reference count and the property node will be de-
stroyed when destroying the last property handle referring to it.

In the CursorCopy() example, a new and independent property node had been
created and was placed at the same position in the handle hierarchy as its origin.

 void HandleCopy (PropertyHandle &person) {

 PropertyHandle p1(&person); // passing handle pointer to get a

handle copy

 p1.Get(0);

 printf("Same instance s% = %s", p1.GetString("pid"),

person.GetString("pid"));

 p1.Close(); // cursor in p1 is still allive

 person.Close(); // cursor is destroyed - last reference closed

}

void NodeCopy (PropertyHandle &person) {

 PropertyHandle p1(person); // passing handle reference to get a

cursor copy

 person.Get(0);

 p1.Get(1);

 printf("Different instance s% = %s", p1.GetString("pid"),

person.GetString("pid"));

 person.Close(); // p1 cursor is destroyed - loosing its

origin

}

 - 37 -

Using keys

Keys are defined as data type projections from a complex data type, i.e. keys refer
to a subset of properties of a complex data type. Ususally, keys consist of a num-
ber of key components, wich are related to attributes of the complex data type.

Key components can be marked as "not being case sensitive" and "descending".
Both option will influence comparing operations and order in indexes. When de-
scending is set for a key component comparing keys will invert the result, i.e. the
lower key value becomes the greater one. Since key compare functions are called
also in order to create and update indexes, key component setting allow determi-
nig whether an index is ordered ascending or descending.

Keys can be assigned to indexes (by name) in order to sort instances in a collec-
tion according to the key definition. Instances are ordered in indexes in ascending
order.

One key per complex data type can be defined as identifying key. This is a con-
ceptual approach indicating, that this is a common key for identifying instances in
any collection. There is no consistency check, i.e. the system does not look for
instances with duplicate keys in a global scope. In order to avoid duplicate keys,
instances can be stored in a global extent that is ordered by the identifying key
and required unique key values.

In order to use keys in programming, keys are passed as key strings (Key) in ob-
ject interchange format (OIF). The Key class provides some features in order to
create proper OIF strings for the key.

Reading data from database

Reading data automatically happens, when selecting an instance in a property
(handle). Thus, you may read instances by calling next() or prevoius() but also by
reqesting a specific instance calling get().

Instances are read automatically, when opening a property handle for an access
path referring to exact one instance.

After an instance has been selected, you may access instance data by extracting
data from the property handle calling the instance() function. Instance returns seri-
alized data for the selected instance in OIF format. This is good for data exchange
or for passing data to other sysrtems, but it is not dificult to access in detail, since
it requires complex syntax analysis.

More appropriate for accessing data from a instance selected in a property handle
is property access by calling different property functions.

- 38 -

From within OSI expressions instance properties can be accessed directly by
name. Nevertheless, also OSI expressins somtimes require generic property ac-
cess (e.g. when combining data from different databases in an expression).

// C++

Property persons(database,"Persons",PI_Read);

while (persons.next())

 printf("Persons ID: %s",persons.string("pid");

 - 39 -

Read by Position

Reading data by position is a good mean in order to position the property on a cer-
tain position. For iterating through a collection, one should use rather next() and
previous(), since get() will throw an exception, when the instance required is not
available. Moreover, next() and previous() evaluate filter conditions and automati-
cally skip instances that do not fulfil the filter condition.

The position of an instance in a collection depends on the sort order for the collec-
tion. When a sort order has been selected (setOrder()), instances are always pro-
vided according to this sort order.

Selecting instance by position is posible in different ways:

reading instance at absolute position

reading instance at relative position

scrolling forward or backward

Absolute position

The simplest one is calling get() with a set position (first instance always has posi-
tion 0). The get() function selects the instance at requested position and returns
the property with the selected instance. When the function does not succeed an
exception is thrown.

There are two special positions in order to read the first and the last instance
(FIRST_INSTANCE, LAST_INSTANCE), which allow accessing the first and the
last instance in a collection. Reading the first or last instance can also be achieved
by calling toTop() and previous().

Since the get() function returns the property with the selected instance, you may
immediately access instance information.

Sometimes you may need to relocate the instance when terminating the function in
order to restore the original state of the property handle. Therefore, you may store
the position of the currently selected instance calling currentIndex() as in the ex-
ample below. This is the only way restoring the selection by position, when a filter
condition has been set.

Selecting an instance at absolute position becomes critical, when a filter condition
has been set for the property (collection). In this case, it is a better way referring to
relative position.

... :: function (Property &persons) {

 int current = persons.currentIndex();

 // print PID of first person

 printf(persons.get(FIRST_INSTANCE).string("pid")); // same as

persons.get(0);

- 40 -

 // print PID of last person

 printf(persons.get(LAST_INSTANCE).string("pid"));

 // read last instance using previous()

 persons.toTop();

 persons.previous(); // last instance

 // relocate instance

 // should be the sam if nothing has changed in the collection

 persons.get(current);

}

Relative position

In order to read an instance by position from a collection with filter condition, get-
Relative() function is more appropriate. The getRelative() function returns the first
instance fullfilling the filter condition.

Calling getRelative() function is sometimes critical, since you cannot trust the posi-
tion returned fro the relativeIndex() function. The relative index is used for access
optimization and usually differs when reading a collection backward or forward.
Thus, getRelative() is good for locating a starting point, but not for relocating an
instance. In order to reselect an instance, you should always use get().

... :: function (Property &persons) {

 int current = persons.currentIndex();

 persons.setFilter("age >= 18");

 // print PID of first accepted person

 printf(persons.get(FIRST_INSTANCE).string("pid")); // same as

persons.get(0);

 // print PID of last accepted person

 printf(persons.get(LAST_INSTANCE).string("pid"));

 // read last instance using previous()

 persons.toTop();

 persons.previous(); // last instance

 // relocate instance

 - 41 -

 // should be the sam if nothing has changed in the collection

 persons.get(current);

}

Scrolling

Scrolling throgh a collection is typical way for reading all or a number of subse-
quent instances from a collection. Usually, instances are selected one by one, in
which case previous() and next() functions are the most appropriate. Since previ-
ous and next do skip instances not fulfilling a filter condition, thos functions work
well for fitered and for unfiltered collections.

previous() and next() return false at end of collection. When calling previous() and
next() for an unselected property handle, next() locates the first instance while
previous() locates the last one. In order to unselect a collection properly, you may
call the toTop() or cancel() function.

In order to go a number of instances forward or backward, you may call the posi-
tion() function. position() scrolls forward in a collection the number of instances
passed in count by skipping instances, which do not fulfill filter conditions.

In order to go backward in the collection, a negative value must be passed to the
function. Thus, position(1) does the same as next() and position(-1) does the same
as previous(). The difference is, that position() returns a property and throws an
exception when not being succesful, while next() and previous() return false at end
of collection.

... :: function (Property &persons) {

 int current = persons.currentIndex();

 persons.toTop();

 while (persons.next())

 printf(persons.string("pid")); // same as persons.get(0);

 // relocate instance

 persons.get(current);

}

- 42 -

Accessing data by key

Reading data by key is a good mean in order to position the property on a certain
instance, which can be identified by key. Keays are returned to the caller and
passed to the functions in an internal Key format. A Key is a string, which contains
key components separates by '|' or ';'.

The structure of a key depends on the sort order for the collection. When no sort
order has been selected (unordered collection), instances are located by ident-
key. When an unordered collections is not unique, it cannot be accessed by key.

Acessing data by key requires, that the application can provide a key for selecting
an instance in a property handle. Therefore, several functions for accessing keys
are provided. When a key became available, different functions can be used in
order to select an instance for the key.

Since keys may consist of several key components, keyed access suppots key
levels. A key level is the component number in the key, up to which key matching
is requested.

Select order

When accessing a collection by position, instances are provided in order of the
selected index (sort key). ODABA supports defining any number of persistent or
transient indexes (orders) for extents and local collections in the data model. Typi-
cally, those index definitions are referred to as sort orders for a collection.

In order to select a sort order that differs from the default order for the collection
(main order), the setOrder() function can be called with an appropriate key name.

One may also define an ad-hoc order, which implicitly creates a view with the de-
fined order key. An ad-hoc order contains a list of attributes or attribute definitions
rather than a sort key name.

 Property persons(obh,"Persons",PI_Read);

 persons.setOrder("ik_Name"); // schema order

 persons.SetOrder("name; age=birthdate-Year()"); // ad-hoc order

Provide key value

 - 43 -

Using instance filters

In order to reduce the instances displayed for a collection, property handles pro-
vide two ways of filtering instances in a collection. One way is by setting an OSI
expression as filter condition for the property handle. The other possibility is to set
an instance or key to hidden when reading an instance, i.e. using the
doAfterRead() handler for filtering instances from the collection.

When a filter has been set, the property handle selects only those instances that
return true (-> isTrue()) for the expression. Sequential retrievals as nextKey(),
next(), previous() or position() automatically search for the next valid instance that
fulfills the filter condition. locateKey() will return an error (not found) when the in-
stance does not fulfil the selection criteria. firstKey() and nextKey() will skip non-
selected instances as well.

The get() function, which is requesting a specific instance by index or key, throws
an exception when the requested instance does not fulfill the filter condition.

When setting a filter for an update or write property handle, updating an instance
may lead to an invalid instance (i.e. the instance is not fulfilling the defined condi-
tion anymore). In this case, the instance is unselected after storing the updated
data.

Setting a filter condition slows down key operations as e.g. nextKey(), since the
instance must be read in order to check the condition. When a condition is based
on key component attributes, only, performance can be improved by calling set-
KeyFilter() instead. Since instance reading is much more expensive than key read-
ing, filtering by key value is much more efficient than filtering by instance.

Filter by OSI expression

The filter conditions (OSI expressions) can be set in the filter() property. The set
and get functions of the property allow changing and reading the filter condition.
You may expand a filter condition by calling expandFilter(). hasFilter() can be
called in order to check, whether a filter condition had been defined or not.

// OSI: access path with selection condition

set<Person> adults = Person.Where{age > 18};

while (adults.next)

 displayPerson(adults);

// C++. C# ...

Property adults(database,"Person",PI_Read);

adults.SetFilter("age > 18");

while (adults.next())

- 44 -

 displayPerson(adults);

Get filtered count

The count() function does not reflect the selection condition, i.e. it returns always
the total number of instances in the collection, independent on a filter condition set
for the collection.The number of instances according to the filter set in the property
handle can be retrieved using the relativeCount() function.

if (adults.relativeCount() > 0)

 Message("Person has grown up children");

Referring to filtered instances by position

Referring to an instance by position or key may fail, since the selected instance
may not fulfil the selection condition. In this case, the function call fails. In order to
access instances by bosition although a filter has been set, getRelative() might be
called.

// C++. C# ...

Property adults(database,"Person",PI_Read);

int indx0 = 0;

adults.SetFilter("age > 18");

while (adults.getRelative(indx0++))

 displayPerson(adults);

Context selection

Even though, filter expressions can be as complex as possible, filtering may de-
pend on other variables, e.g. run-time variables. In this case, filtering can be done
esier by using context class functions. In order to support filtering based on key
data, the doBeforeRead() handler can be used. Instance filtering should be done
in the doAfterRead() handler.

Key filter

Context selection is based on the doBeforeRead() handler that handles the
DBP_Read event. This event isgenerated always, when an instance is going to be
read, i.e. after the instance has been located in the collection. The event is also
generated when using key access methods as nextKey() or locateKey().

For ordered collections (when a sort order is selected for the property handle) the
key is available as well as the identity of the instance. The doBeforeRead() han-
dler can be overloaded to supress instances, that do not follow certain conditions.
Since instance information is not guaranteed, the check can be made based on
data of the key instance or the identity, only.

// accept persons with names lower than 'P'

 - 45 -

bool sPerson:: doBeforeRead() {

 Property *ph = property();

 return((ph.getKey("name").string() <= 'P' ? true : false);

//true for accept

}

Instance filter

In order to check onstance filter conditions, the doAfterRead() handler must be
used, which handles theDBO_Read event. This event is generated after reading or
re-reading instances. When the handler has been called, instance data can be
accessed. Since the doAfterRead() handler is an "after" event, which cannot influ-
ence the process logic, it must hide the instance explicitly.

Hiding the instance will suppress the selection of the instance when trying to read
it with get(). When using position(), next() or previous(), hidden instances are
skipped.

The ?hidden? state is automatically reset when the selection in the property han-
dle changes the selection. It is, however, also possible to reset the ?hidden? state
using the context function showInstance(). The ?hidden? state is inherited to de-
rived structure instances.

// accept adult persons, only (age >= 18)

bool sPerson:: doBeforeRead() {

 if (property("age").integer() < 18)

 HideInstance();}

 return (true);

}

Key check

Sometimes, a filter condition is based on properties, which are all key compo-
nents. Unfortunately, key functions as NextKey() or FirstKey() will normally read
the instance before checking the condition, i.e. key access will not be as efficient
as without selection.

When reading keys from the database and a filter is set, the instance is read in
order to check whether the key refers to an accepted instance or not.

In order to provide fast selection for key filter, key check can be enabled, e.g. after
setting the filter condition for the property handle by calling the enableKeyCheck()
property handle function. When key check is enabled for the property handle,key
functions will check the selection condition based on the key selected for the prop-
erty handle, only. When the expression refers to non-key properties, the initialised
instance values are used for evaluation.

// OSI: access path with selection condition

- 46 -

set<Person> lowCaseName = Person.OrderBy("sk_Name").Where{name >=

'a'};

lowCaseName.enableKeyCheck;

while (lowCaseName.nextKey) // filter by key access

 displayPerson(lowCaseName);

// C++. C# ...

Property lowCaseName(database,"Person",PI_Read);

lowCaseName.enableKeyCheck();

lowCaseName.setOrder("sk_Name");

lowCaseName.SetFilter("name >= 'a'");

while (lowCaseName.nextKey()) // filter by key access

 displayPerson(lowCaseName);

Common properties on instance level

Beside properties defined in the data model, ODABA supports several instance
properties, which are available vie instance descriptors maintained by ODABA for
each instance. Many of those propertie are available by property functions, but
sometimes it is more comfrtable accesing them via property names.

__IDENTITY, __LOID

Each object instance contains the local unique identifier for the instance, which is
provided passing this attribute. The value can also be provided calling the loid()
function.

 Property persons(obh,"Persons",PI_Read);

 Property p_loid(persons,"__LOID");

 int64 loid;

 persons.get("00001");

 loid = persons.loid(); // same as: p_loid.bigInteger()

 // or: persons.bigInteger("__LOID")

__GUID

The property contains the global unique identifier for an instance. In order to as-
sign a global unique identity to an instance, the structure definition in the data

 - 47 -

model must have switched the guid option on. Moreover, the guid option must be
set for the collection owning the instance. When the instance is not equipped with
global identifiers the local identifier within the database is returned.

Global identifiers differ from local once syntanctically, since they begin with an one
diget version number and a dash, always (e.g. '1-...').

Global identifiers can also be read calling the guid() function.

 Property persons(obh,"Persons",PI_Read);

 Property p_guid(persons,"__GUID");

 String guid;

 persons.get("00001");

 guid = persons.guid(); // same as: p_guid.string()

 // or: persons.string("__GUID")

__SORTKEY, __SORTKEY_STRING

Referring to __SORTKEY_STRING will return the key value for the instance. The
key can be used for displaying or locating an instance in the collection.

Used with the ODABA API, both properties return a key string. In the system API,
however, __SORTKEY returns the internal key, while __SORTKEY_STRING re-
turns the key value converted into string format.

Instead of referring to the __SORTKEY attribute, you may also call the sortKey()
function.

 Property persons(obh,"Persons",PI_Read);

 Property p_sortkey(persons,"__SORTKEY");

 Key sortkey;

 persons.get(0);

 key = persons.sortKey(); // same as: p_sortkey.string()

 // or: persons.string("__SORTKEY")

__TYPE

The type property may change also for insttances in a collection (weak-typed or
untyped collections). In order to retrieve the type of the selected instance, one may
refer to the __TYPE property or call the currentType() function.

 Property persons(obh,"Persons",PI_Read);

- 48 -

 Property p_type(persons,"__Type");

 String typeName;

 persons.get(0);

 key = persons.currentType(); // same as: p_type.string()

 // or:

persons.string("__Type")

Write to database

 - 49 -

Create object instancess

- 50 -

Update object instances

 - 51 -

Rename or duplicate object instances

- 52 -

Remove or delete object instances

 - 53 -

Using transactions

Closing property handles

Property handles are closed automatically, when being destroyed. Property han-
dles are also closed automatically, when opening another property with the same
property handle. Sometimes, it makes also sense to close the property handle ex-
plicitly calling the Close() function.

Closing a property handle will reduce the reference count in the property node re-
ferred to by the property handle. When the reference count becomes 0, the prop-
erty handle node will be deleted. When destroying a property node, which refers to
modified instance data, the instance modifications are stored to the database be-
fore closing the property node.

Destroying a property node may have a number of unexpected side effects, since
deleting a property node will destroy also all its copies and its children.

I.e. destroying a property node will delete all property nodes created implicitly for
the node instance (instance property nodes). Instance property nodes are not de-
leted, as long as the node instance exists and the instance exists as long as the
property node exists.

For maintaining property node copies properly in a property node hierarchy, copies
for property nodes require a reference to their origin. Hence, closing a property
node will also destroy all copies.

Destroying an property node will automatically close all property handles referring
to it. Thus, Property handles may become inaccessible, because of being closed
implicitly. Implicitly destroyed property nodes are destroyed bottom-up, always.

Usually property handles should be closed by the application (explicitly or by de-
stroying the property handle object). When, for some reason, property nodes re-
main unclosed, the database will close at least all property handles referring to
persistent properties before closing the database.

void CloseHandle (PropertyHandle &ph) {

 ph.Close();

}

Data conversion

ODABA provides builtin data conversion support. Most types of conversion be-
tween elementary data types are supported, but some conversions may result in
empty values.

- 54 -

Converting values behave differently depending on the value type for source
(right) and target (left) operand. Thus, elementary values might be vonverted into
elementary values, but also into complex values or arrays. Reversely, arrays or
complex values may be converted into elementary values.

Conversion is considered as a feture between attribute and complex values, but
not for collection values. Builtin conversion functions will ignore collection proper-
ties, when being part of a value.

Most of elementary data type can be converted into each other. The following list
shows the unsupported conversions. Unsupported conversions will signal an error
or may throw an exception.

From

To

int

MEMO, DateTime

bool

MEMO, DateTime, Time, Date

Date

MEMO, Time, double

double

MEMO, DateTime, Time, Date

string

-

Time

MEMO, Date, double

DateTime

MEMO, int, double

Special handling is required for BLOB values, which can be converted into BLOB
values, only.

 - 55 -

Converting to elementary value

Practically, there exist two essential elementary data types: string and number.
Considering all numeric types, bit, bool, Date, Time and enumerated values as
numbers, remaining types (except BLOB) can be considered as string types.
DateTime values are not considered as elementary value.

String to number conversion is supported as well as number to string conversion.
Converting data may result in data truncation or data loss. In order to check com-
patibility, corresponding functions might be called explicitely from within te applica-
tion.

When the target value has a restricted valu domain (enumerated type value, date,
time), invalid values will cause an error or throw an exception. Conversion errors
are always signaled, when trying to convert a BLOB value in anything else or re-
verse.

String conversion

Converting strings into strings or numbers depends on the data type for the target
value. In most cases, string conversion will succeed, but the result might be trun-
cated in the one or the other way.

To number

Converting strings into numbers accepts also strings not containing valid numbers.
Strings will be converted into numbers as far as possible. Thus, a string value
"abc" results in an empty value (0), when being converted, but does not cause an
error or throws an exception. Similar, a string value "12abc45" would result in 12
ignoring follwoing "abc45" characters.

To string

Converting string values to string values will truncate the right operand (source),
when the size of the target is smaller than the source size, e.g. assigning a string
value "abcde" to a three character string will result in "abc".

When the target string zize is larger than the source, the target will be padded with
spaces (' ') 0r 0 demending on the string type (0-terminated or buffer).

To Boolean

Converting a string to a bBoolean value checks, whether the string content corre-
sponds to a true value or not. When the string has one of the following values, it is
considered as true, otherwise as false:

 ttrue, t, yes, y, 1

These values are not case sensitive. The string may contain trailing blanks, but no
other trailing characters. Also, no spaces must preceed the value.

 'TRUE' --> true

- 56 -

 'TRUE' --> false

 'TRUE ' --> true

 ' TRUE' --> false

To enumeration

Converting a string into an enumeration, the string value passed in the right oper-
and (source) must match eactly (case sensitive comparision) the name of an enu-
merator defined in the enumeration assigned to the target value type. When no
match could be found, conversion results in an error or throws an exception.

To date

Converting string to date requires a valid date string. Valid date strings comsist of
year (2 0 4 characters), month (1 or 2 characters) and day (1 or 2 characters). Dif-
ferent orders of year (Y), month (M) and day (D) are supported:

 dd.m.y (German)

 mm/d/y (English)

 yy-m-d (default)

The separator choosen determins the position of year, month and data in the
string. When the values passed between separatord do not correspond to valid
day, month or year numbers, the conversion results in an empty date value.

To time

Converting string to time requires a valid time string. Valid time strings comsist of
hours, miniutes, seconds and hundreth seconds. One string format is supported
for time values:

 hhours [:minutes [:seconds [,hseconds]]]

Minutes, seconds and hundreth seconds are optional. When the values passed
between separatord do not correspond to valid values, the conversion results in an
empty time value.

Number conversions

There are no problems converting any type of numbers to string values. When the
size of the string value is to small for storing the required value, it will be truncated.
Also, most number to number conversions will perform well, but may result in trun-
cation.

Tu numerical

Converting a numerical value into number returns the numerical value of the
source (right) operand. date and time result in an integer value (number of days or
hundredth seconds). Prceision will be adjusted to the format of the targer value.
When the target value size is exceeded, the maximum or minimum value will be

 - 57 -

returned. Thus, assigning a numerical value 1234.56 to an INT(3,1) value will re-
sult in 999.9.

Converting an enumerated type value into a number will return the assigned code
value for the enumerator.

To string

Converting a numerical value to string returns the corresponding string representa-
tion including decimal points and thousands separator according to the target val-
ue definition. When the value exceeds the string size, the string is filled with *, but
no error is signaled.

Boolean values are converted into Y and N. Enumerated values (code) are con-
verted into enumerator names, when the numerical value passed is a valid cade in
the enumeration.

Date and time values are returned as yy-mm-dd or hh:mm:ss,hs strings. In order
to frovide other formats, special date/time formats might be set.

To Boolean

Converting a number to a boolean value results in false, when the value is 0 and in
true otherwise. Date and time values result in false, when they are empty and in
true otherwise.

To enumeration

Converting a number into an enumated type value will check the value before as-
signing it. When the value is not a valid value in the enumeration, conversion sig-
nals an error.

To date

Converting a numerical value into a date value assigns the number to the date
value, wich is interpreted as number of days since January 1st 1870. When the
value is less than 0, conversion signals an error.

To time

Converting a numerical value into a time value assigns the number to the time val-
ue, wich is interpreted as number of hundredth seconds. When the value is less
than -1 (empty time value), conversion signals an error.

Complex data type conversion

Assigning a complex value or array to an elementary value, usually assigns the
first attribute of the array or complex value. When assigning an array of complex
values, the first attribute value of the first array element will be assigned.

When, however, the target (left operand) is a string value, the source value (pa-
rameter or right operansd) is converted into an ESDF string, wich is able to carry
compley values in string format. The ESDF format is a positioned value format that
can store hierarchical data. It does, however, not carry schema information as at-

- 58 -

tribute names, which correspond to the complex data type of the source operand,
in this case.

 - 59 -

Convert data to complex value or array

When assigning a value to an array, as many values as defined in the right oper-
and will be assigned to the array. Remaining array elements for the left operand
will be initialized. Remaining elements for the right operand are ignored. When
assigning an elementary value to a complex value, the first attribute of the com-
plex data type is filled, while remaining attributes will be initialized.

Number conversion

When converting an elementary value (number) to an array or complex value, the
value is assigned to the first array element or attribute in the complex value. In
case of an array of complex values, the value is assigned to the first attribute of
the first array element. All other elementary valus of the target value will be initial-
ized.

String conversion

Strings may contain complex values in ESDF format. When assigning an elemen-
tary string value to a complex or array value, only the first elementary wvalue will
be set to the value passed in the string. Remaining array values or values in a
complex value will be initialized.

When passing a complex value in the string, the value is interpreted according to
the type of the target value, i.e. value elements in the string are assigned to array
elements, when the traget of conversion is an array or to attribute values, when
the target is a complex value. Each sub-assignment follows the conversion rules
described so far, i.e. the complexity of values that can be converted is not limited.

Converting complex values

Converting complex value to complex value means converting a complex attribute
to another complex attribute. In this case. metadata is available and values are
assigned by name. Values appering in the source operand (perameter or right
hand operand) but not in the target, will be ignored (without warning). Values in
defined in the target, but not in the source, will be initialized in the target. Values
for attributes defined in both are converted according to the rules described so far.

- 60 -

1.3.4 Advanced property handles

The intension and extension managed by a property handle is defined in terms of
access paths in many cases. An access path can be seen as an extension of an
OQL query statement (like the SQL statement for relational databases). In fact, the
OQL statement is only one posibility of defining an access path.

Simple property handles are based on property references, i.e. simple property or
extent names, which are specific access paths as well. Besides, ODABA provides
advanced property handles for different purposes, which can be constructed by
means of more complex access paths. Similar to basic property handles, ad-
vanced property handles are used to manage collections, instances or elementary
values, except, that those need not to refer to persistent data.

Other advanced property handles, which are not based on access paths, can
be created in order to manage temporary or transient collections (transient
properties) created by the application or defined in the data model.

In may cases, advanced properties just provide a sort of short cut for accessing
data (property path and path property). Other access paths allow defining complex
operations on data (views) or managing transient result instances or collections.

The functionality for advanced property handles is the same as for basic property
handles. The essential difference is the data (collection) managed by the property
handle.

Different types and functions of access paths

Access paths can be referenced in OSI expressions or as data source for property
handles. Since access paths can be defined in many different ways, the following
sections will explain a bit more detailled, how access paths can be used to achieve
certain results.

Access paths can be devided in subsequent types:

property reference - directly refers to an extent or property in a structure in-
stance (by name)

property path - refers to members wirhin a structure instance

path properties - define iteration paths by traversing relationships or references

operation paths - contain one or more operations in the path

view path - includes set operations as product or join and are, hence, an exten-
sion of OQL queries.

 - 61 -

An access path performs mainly two essential functions:

execute - evaluate the result from the path definition

access - selecting and providing instances from the collection defined by the
path

In an OSI expression the system decides, when to execute and when just to ac-
cess the path. When using an access path as data source for a property handle,
the application can decide, when to execute the path and when accessing it.

Simple access paths as property references or property paths can be called for
execution but will not do anything. More complex path as operation or view path
may call execution also while accessing.

An access path consists of various elements (Access Path Elements), which de-
termin the behaviour of the path.

- 62 -

Local and static access paths

Staic access path are those, beginning with an extent name (or global variable).
Since static access path do not have parents, they cannot change parent and
need to be executed only once (e.g. in case of operation path). Nevertheless, the
global collection may change and the result must be recalculated. This cannot be
done by the system and must be triggered by the application.

Local access path are those, that have a parent property (collection or instance).
In this case, the value of the access path depends on the instance selected in the
parent property handle. When no instance is selected, the value of the access
path is NULL, i.e. the data set is not only empty. You cannot even ask for the
number of instances for the access path. Each time, when another instance in the
parent property is selected, the path valu changes. In case of operation or view
paths this requires recalculating the result, i.e. the path must be executed. This is
done automatically, when trying to access data from the path data set. The appli-
cation may, however, explicitly execute the path. When explicitly executing an op-
eration path, the path is executed regardless wether a new instance has been se-
lected in the parent or not. This enables the application to recalculate the path in
order to reflect changes in the path for the currently selected parent instance.

 - 63 -

Access via property reference

A property reference is a simple access path containing just an elementsry proper-
ty name referring to a property in structure. Opening a property handle with prop-
erty reference directly provides the property handle from the instance or a copy of
it. The data set managed by the property handle is the data set stored for the
property instance in the currently selected structure instance.

// access to city via basic property handles

 Property persons(obh, "Persons", PI_Read);

 Property address(&persons, "address"); // original

instance property handle

 Property city(&address, "city"); // original

instance property handle

 Property children(person, "children"); // copy of

instance property handle

// PH-Macro: the short way of definition

 PH(&persons,address)

 PH(&address,city)

 PH(persons,children)

- 64 -

Access via property paths

A property path is a generic way of accessing properties, which are not directly
defined as member in the type definition for the instances managed by the proper-
ty handle.

A property path may refer to a reference or relationship property at the end (last
path element), but also at the beginning or in the middle of the path definition. In
contrast to a path property, however, the property path does not contain navigation
or selection elements, i.e. it contains property names, only, separated by dots (.).

Usually, property paths do apply on properties, only, which are part of the data
type managed by the property handle.

Typical example is the address defined as a member of person, which is a struc-
tured attribute. The two examples below illustrate the difference between using
property references and property paths and make clear, that a property path ia just
an abbreviation for a list of property references.

Property paths do not need to be executed. The result is represented by the last
property referenced in the paroperty path.

// access to city via property references

 Property persons(obh, "Persons", PI_Read);

 Property address(&persons, "address");

 Property city(&address, "city");

// property path to city

 Property persons(obh, "Persons", PI_Read);

 Property city(&persons, "address.city");

// osi examples

... Person::Test()

{

 ::message(address.city); // property path

 address.{ ::message(city); }; // property references

}

Switchable property path

A property path containing reference or relationship properties in at least one path
element, which is not the last one, the path can be switched by the axpression or
application.

 - 65 -

In the example below, the property path children.age returns a different value for
each iteration depending on the person selected in the children collection.

bool Person::HasGrownupChildren()

{

 children.ToTop;

 while (children.Next)

 if (children.age >= 18) // age changes for each selected

child

 return(true);

 return(false);

}

Switching path

When a property path does not start with an extent node or global variable, the
path value depends on the instance selected in the parent property. Thus, in the
example below, the city name will change for each person selected in the person
collection.

collection void Person::Streets()

{

 ToTop;

 while (Next)

 ::Message(name + ": " + address.city);

}

- 66 -

Path properties

In contrast to property paths, path properties allow navigating through a defined
property hierarchy. Syntactically, a property path differs from a path property by
containing at least one navigation element ([]- or ()-operator).

The ()-operator is the selector operator, which indicates either an iteration element
or an instance selection. The []-operator is the provide operator, which selects or
creates an instance when not yet existing.

Depending on the selector and provide operators, a path property refers to a col-
lection of instances of the type being defined in the last path element, i.e. a path
property can be seen as the collection of all instances one receives when iterating
through the property hierarchy, which is a sort of specific union operation.

In general, you can express each path property by a sequence of property refer-
ences and appropriate function calls for instance selection and iteration. But the
path property is a better way in many cases, since it prevents you from program-
ming errors, is easier to write and more transparent for other readers. Path proper-
ties are typically used in OSI expressions. Using path properties in application
programs is more a matter of taste.

// access to city via path proprty

void test(ObjectSpace &obh)

 Property cities(obh, "Persons().address(0).city", PI_Read);

 while (cities.next())

 SystemClass::message(cities);

}

// osi example

void main()

{

VARIABLES

 set<STRING> &cities = Persons().address(0).city;

 while (cities.next); // property path

 message(cities);

}

 - 67 -

Access path elements

An access path may contain different kind of elements, which differ syntactically.
In oder to iterate through a collection or selecting a specific collection instance,
following element types are available:

reference

iterator

selector

instance provider

(operation)

Operation elements cannot be recognized syntactically, but usually, the user can
recognize the difference between an operation and a property in the path by nam-
ing konventions.

1.3.4.1.1.1 Reference element

A reference element just consists of a property (or variable) name: Reference el-
ements can be used at any position in a path.

 <persons.children.children

Usually, reference elements will noct change selection and do refer to the currently
selected instance in the path. Especially in OSI expressions, this is used to selects
an instance in a collection and referring to it in the next statement(s).

The application is responsible to select propert instances in reference elements,
because otherwise, the path returns nothing.

As long as the path uses reference elements, those will refer to the pre-selected
instances. When the path, however, contains an iteration or selector element, sub-
sequent reference elements do not have the same selection and are known in the
context of the path, only. Thus,

 <persons.children.children

and

 <persons.children().children

refer to the same selection in person, but children() usually has a different selec-
tion from children and so do all subsequent reference elements.

 person.Get(0); // selects the first person in the

collection

 Message(person.name); // prints the name of the selected person

 if (person.children.Next) // selects the next child for the

selected pwerson

- 68 -

 Message(person.children.name); // prints the name of the

selected child

1.3.4.1.1.2 Iterator element

Iterator elements are property references followed by an empty parameter list: It-
erator elements are used to indicate the iteration level:

 <persons.children().children()

This path will iterate through all grand children of the person selected in the per-
sons property. It will not iterate through the persons collection, since persons does
not define the selector operator. When, however, defining the path as follows:

 <persons().children().children()

The path provides all grand children for all persons. Iterator elements in a path are
just an abbreviation. Instead using iteration path, one could always write a nested
loop, e.g.

while (persons.Next)

while (persons.children.Next)

while (persons.children.children.Next)

In many cases, it is, however, much easier to refer to a path.

//prints name and first name for all grand children

//duplicates may appear, since a person may be grand

//child of maximum four grand parents.

// using path property

 PropertyHandle grand_children(obh,

"Persons().children().children()", PI_Read);

 while (grand_children.Next())

 printf("Name: %s, first name: %s",

 grand_children.GetString("name"),

 grand_children.GetString("first_name"));

// using property references

// produces the same same result as the example above

 PropertyHandle persons(obh, "Persons", PI_Read);

 PropertyHandle children(&persons, "children");

 - 69 -

 PropertyHandle grand_children(&children, "children");

 while (persons.Next())

 while (children.Next())

 while (grand_children.Next())

 printf("Name: %s, first name: %s",

 grand_children.GetString("name"),

 grand_children.GetString("first_name"));

// OSI expression

void Person::Test()

{

VARIABLES

 set<Person> &grand_children &= Persons().children().children();

PROCESS

 while (grand_children.Next)

 ::Message("Name: " + name + ", first name: " + first_name);

}

1.3.4.1.1.3 Selector operator in a path property

Selector elements are property names followed by a selector parameter. The se-
lector operator can be used for selecting a specific instance in a path element:

 <persons("P0001").children().children()

In this example, the path returns all the grand children for the person with the per-
son number (pid) P0001. With the selector operator, you may select a single in-
stance in the path by posoition or constant or variable value, but you cannot define
a filter condition. For defining filters, you may use an operation path.

The path will never iterate for selector elements, defining a selector element after
an iteration element, iterating through the path automatically selects the instance
in the selector element, when existing.

 <persons().children(0).name

When not existing (currently selected person does not have a child), the next per-
son will be selected, i.e. the path above returns the name for the first child of all
persons havin children.

- 70 -

Instance selection is possible by key value or position or by an expression, in
which case the value returned from the expression is interpreted as key value. The
last case is an interesting feature, when using path properties in OSI expressions.

1.3.4.1.1.4 Selector operator in a path property

The provide operator guarantees, that the requested instance will be provided for
the referenced property. I.e., an instance with the defined key will be created,
when not yet existing.

 <Persons['P00001"].children

will provide a person with the person number (pid) P00001, i.e. it will be read or
created, when not yet existing.

Typically, the provide operator is used for single reference or relationship proper-
ties in order to create required instances on the fly. Considering the development
resource instances, which are linked to a documentation topic (DSC_Topic) via a
resource reference (SDB_ResourceRef), you may want to generate titles for func-
tions. Resource references and documentation topics are created on demand, i.e.
you can never be sure, that they already exist. The example below shows, how
this can be handled simply by using the provide operator.

The example automatically creates resource reference and topic on the path,
when titles do not yet exist or are empty (!title).

// using path property

void UpdateTitle(PropertyHandle &class_ph) {

 PropertyHandle functions(&class_ph, "pfunctions");

 PropertyHandle title(&functions,

"resource_ref[0].topic[0].definition.definition.name");

 functions.ToTop();

 while (functions.Next())

 // assign function name to title if title is empty

 if (!title)

 title = functions.GetString("sys_ident");

}

// using base property hierarchy -

// produces the same same result as the example above

void UpdateTitle(PropertyHandle &class_ph) {

 PropertyHandle functions(&class_ph, "pfunctions");

 - 71 -

 PropertyHandle resource_ref(&functions, "resource_ref");

 PropertyHandle topic(&resource_ref, "topic");

 PropertyHandle title(&topic, "definition.definition.name");

 functions.ToTop();

 while (functions.Next())

 if (!resource_ref.Provide(0))

 if (!topic.Provide(0))

 // assign function name to title if title is empty

 if (!title.IsTrue())

 title = functions.GetString("sys_ident");

}

1.3.4.1.1.5 Special behavior of path properties

In general, property handles for path properties behave the same way as basic
property handles, i.e. they provide the same functionality. However, when using
path properties, most of the functionality is delegated to the last element in the
path property. Meta-information (type, dimension, size etc) also refers to the
metadata for the last element.

In general, path properties should be used when sequential iteration is required or
when information from related instances needs to be retrieved, which is connected
to the current instance via a singular reference/relationship path.

As other property handles, the path property can be positioned or counted. Never-
theless, path property should be used mainly for sequential access, since position-
ing the collection to a certain position may take a while (even though, the property
node always tries to find the shortest way from the current position). Counting the
elements means adding the counts for the elements for the last path property ele-
ment. In order to maintain the current position, a copy of the path is provided for
counting.

You may also try to locate an instance by key (according to the sort key currently
set for the last path property element by default or by ChangeOrder()). Locating an
instance by key value, however, also tries to locate an instance with the requested
key in all last element collections until it finds one.

Selections and instance event handler can be set for a path property, but those
only receive events from the last path element.

- 72 -

Access via operation path

The operation path is any type of access path, which contains at least one opera-
tion or inline expression besides property references. In contrast to properties,
operations are functions or expressions referred to in a path. Even though, transi-
ent properties are operational, the are considered as properties and behave as
such. Thus, special behavior of an operation path is resulting from the fact, that
the path contains at least one operation.

Operations included in a path definition can be of different type. Besides traditional
query operations as SELECT, FROM, WHERE etc. additional query operations as
INTERSECT or UNION and property handle functions as GetCount can be refer-
enced in anoperation path. Also user defined expressions or context and interface
class functions may appear in an operation path.

Usually, an operation path creates a virtual result set. The result set can be ac-
cessed by property handle functions (e.g. Get()). Since virtual collections can be
processed sequentially, only

A view path is a path, which refers to a predefined view in the database schema or
to traditional or extended query operations. ODABA supports view schemas as
well as view collections. A view schema defines a transient structure and the
sources for all its properties. Property sources can be defined in a structure con-
text, i.e. they may refer to properties defined in the structure the view schema is
based on. A view schema based on a structure is considered as method of the
class formed by the structure. Thus, a view schema can apply to any structure
instance of the given type. Applying a view schema to a structure instance is pos-
sible in an access path or by defining an appropriate property handle.

Persons().USE('PView')

In the path above, the view schema PView applies on all person instances of the
person collection. In a way, USE replaces the SELECT clause in an OQL/SQL
query, but predefined views provide more features for evaluating view properties.

View properties or transient properties can be defined as static or local properties.
As local properties, they will be associated with a structure, but they are not con-
sidered as structure methods but as (transient) properties of the data type. Since
evaluating transient properties is a performance critical issue, ODABA evaluates
transient properties only, when trying to access transient property data. The appli-
cation may, however, call the Execute() function in order to re-evaluate the transi-
ent property at any time.

Whe the parent changes for a local view property, it will be re-evaluated automati-
cally after the next instance is selected in the parent property, when data is re-
quested from the transient property.

In most cases, views are used for reading data. Sometimes, it might, however, be
useful to update view properties and write them back to its origin. This is possible

 - 73 -

only, as long as the view property receives data directly (1:1 relation) from a per-
sistent source property.

1.3.4.1.1.6 Access via view definitions

A specific subset of operation paths are view paths. A view path is a path, which
refers to a predefined view in the database schema. ODABA supports view sche-
mas as well as view collections. A view schema defines a transient structure and
the sources for all its properties. Property sources can be defined in a structure
context, i.e. they may refer to properties defined in the structure the view schema
is based on. A view schema based on a structure is considered as method of the
class formed by the structure. Thus, a view schema can apply to any structure
instance of the given type. Applying a view schema to a structure instance is pos-
sible in an access path or by defining an appropriate property handle.

Persons().USE('PView')

In the path above, the view schema PView applies on all person instances of
the person collection. In a way, USE replaces the SELECT clause in an
OQL/SQL query, but predefined views provide more features for evaluating
view properties.

View properties or transient properties can be defined as static or local
properties. As local properties, they will be associated with a structure, but
they are not considered as structure methods but as (transient) properties of
the data type. Since evaluating transient properties is a performance critical
issue, ODABA evaluates transient properties only, when trying to access
transient property data. The application may, however, call the Execute()
function in order to re-evaluate the transient property at any time.

Whe the parent changes for a local view property, it will be re-evaluated au-
tomatically after the next instance is selected in the parent property, when
data is requested from the transient property.

In most cases, views are used for reading data. Sometimes, it might, howev-
er, be useful to update view properties and write them back to its origin. This
is possible only, as long as the view property receives data directly (1:1 rela-
tion) from a persistent source property.

1.3.4.1.1.7 Query operations

A view path path is an operation path referring to several built-in query operations.
Built-in query operations are all operations, which are allowed in an SQL/OQL SE-
LECT statement including some ODABA specific extensions. SELECT is consid-
ered as query operation as well.

Syntactically, built-in query operations sometimes differ from other operation calls
in more complex parameter lists (as e.g. SELECT or GROUP_BY). Therefore, you
should check the reference manuals (OSI Language Reference) carefully.

- 74 -

ODABA supports view definition as view path but also as classical SELECT
statement. Using access path provides, however, more flexibility. The general
structure of a SELECT statement would be like:

SELECT (assignment rules)

 FFROM (source)

 WWHERE (pre-condition)

 OORDER_BY (key definition)

 GGROUP_BY (grouping rules)

 HHAVING (post-condition);

HAVING and WHERE do both expressing a filter condition in the context of the
preceding operand. Hence, in a view path you may use WHERE always instead of
HAVING. Instead of SELECT, the view path may refer to a predefined view via
USE. Finally, the FROM clause is typically replaced by an access path (e.g. prop-
erty reference), which provides much more flexibility. For multiple set operations,
the FROM operator acts like a set product operation. In a view path, the query
specification looks differently, since the view path (operation path) implies a pro-
cessing order from left to right:

 FFROM(source).ORDER_BY(key definition).SELECT(assignment
rules).

 WWHERE(pre-condition).GROUP_BY(grouping-
rules).WHERE(post-condition);

In addition, view paths definitions support several built-in query functions:

 <JOIN - Join two collections

 <UNION - Union two collections

 <INTERSECT - Intersect two collections

 <TO_FILE - Redirect output to file

 TTO_DATABASE - Store output to database

 <FROM_FILE - Redirect input to file

 <USE - Predefined assignment rules (replaces SELECT)

Besides the view operations mentioned above, other operations or properties
might be referenced within the path. Each path element represents an independ-
ent generic operation, which can be called with any collection. As long as the re-
sult of a path element is a collection, you may extent the view path by further ele-
ments.

 - 75 -

Since view paths is a sequence of set or OQL/SQL operations, the view path is
just a special operation path. In other words, each operation path may contain any
number of view operations.

1.3.4.1.1.8 Set operations

Usually, the view source plays a role in traditional SELECT statements, only. Here
an explicite source definition is refquired using the FROM clause.

 FFROM(source)

In an operation path, usually the source collection is sufficient, i.e. the operation
paths

 FFROM(source).Where(..). ... and

 source.Where(..). ...

are identical, as long as the FROM operation refers to only one operand. The
source operand might by a simple property name, but also an access path or an
inline expression, i.e. any type of syntactical operand, that returns a collection.

Compared with traditional OQL/SQL statements, the source definition in an OSI
access path provides a number of additional features. In general, eac operation
path can be referred to as source, but there are specific operations, that might be
referred to as source in particular:

external files

union collections - result of Union operation

join collections - result of Join operations

intersect collections - result of Intersect operation

minus collections - result of Minus operation

product collection - result of From operation

External file source

The ExternExtent operation allows assigning different kinds of external files as
source for an operation. External files usually do have an file location and a file
definition (file and exchange scheme), which might be part of the file definition.

The extern Extent operation differs slightly from the FromFile operation, which im-
mrdiatly imports the external file into the callection os the calling property (collec-
tion). The FromFile operation returns the calling property, i.e. the collection with
the imported instances.

// access file

FileExtent(Path='c:/temp/my_persons.xml', FileType='xml',

 Definition='c:/temp/my_persons.def', Headline = false)

// import file

- 76 -

FromFile(Path='c:/temp/my_persons.xml', FileType='xml',

 Definition='c:/temp/my_persons.def', Headline = false)

Union operation

The union operation allows merging two collections. There are two ways of defin-
ing a union operation. Calling Union as

 AA.Union(B)

Unites A with B and stores the result in A. Calling union, however, as

 UUnion(A,B)

Creates a new collection containing the union of A and B.

Minus operatopn

The minus operation removes instances in the second operand collection from the
first operand collection. There are two ways of defining a minus operation. Calling
Minus like

 AA.Minus(B)

Creates the difference between A and B and stores the result in A. Calling minus,
however, as

 MMinus(A,B)

Creates a new collection containing the difference of A and B.

Intersect operation

The intersect operation creates a collection containing all instances from the first
and from the second collection. Calling Intersect like

 AA.intersect(B)

intersects A with B and stores the result in A. Calling Intersect, however, as

 IIntersect(A,B)

creates a new collection containing the intersection of A and B.

Join operation

The join operation flattens a path, i.e. it creates an instance containing all collec-
tion instances participating in the path. The join operation requires a properties,
wich are elements of a property path as parameter, i.e. each operand must be a
valid operation path for its predecessor.

In order to avoid naming conflicts, join operands can be assigned to target proper-
ty names. Named parameters must also be used in order to assign expressions or
access paths to a join operand. The result instance contains then one attribute
instance for each parameter with the property name assigned in the parameter
specification.

 - 77 -

Passing other collection expressions as an access paths or an extent, the opera-
tion will return the collection passed to the operation without operating on it.

The result of a join operation contains all instances by iterating the property path.
In the example below, the result contains all grand children, but each instance
consists of a three person instances.

Join(Persons, childeren, grand_children=children)

Product operation

There is no specific product operation, but in order to create set products, the
From operation can be used by passing any number of collections to the opera-
tion.

 FFrom(Persons, Companies)

The product or FROM operation creates a collrction that contains any possible
combination of instances from its operands. It creates an instance containing all
collection instances participating in the operation. Each operand in a From opera-
tion must be a valid operand in the context of the calling operand or a static ex-
pression.

In order to avoid naming conflicts, From operands can be assigned to target prop-
erty names. Named parameters must also be used in order to assign expressions
or access paths to a From operand. The result instance inherits then from all in-
stances involved in the operation. , In case of name ambiguity, you may refer to
bas instances similar as to imbedded attributes since ODABA supports named
base structures.

From(men = Person.Where(sex=='male'),

woman=Person.Where(sex=='female'))

1.3.4.1.1.9 View properties

From a view source, any number of view properties can be derived. View proper-
ties can be defined in a view schema, which can be referenced in the USE opra-
tion:

Persons().USE('PView')

where the view schema (PView) applies on all instances in the view source.
Thus, USE replaces the SELECT clause in an OQL/SQL query. The SELECT
clause is another way of defining view properties in an ad-hoc query:

Persons().DEFINE(name, address, full_name = getFullName)

View propertiey might be simple attributes, complex data type instances or
collections. When not passing a calculation rule, the rule property is taken
as being defined under tha same property name in the source. One mya, al-

- 78 -

so pass calculation expressions as operands, expressoions or expression
calls defined in the context of the view source instances.

In case, the view source is untyped or weak-typed, view property definitions
must be valid for all instance types, which may appear in the view source.
One way of ensuring view property compatibility is calculating critical prop-
erties via virtual expressions.

// osi example with inline expression

 Persons.Select(pid, address,

 STRING full_name = {

 VARIABLES

 bool first = true;

 STRING result = 'Mrs. ';

 set<MessageEingang> &mi = message(0).an;

 PROCESS

 if (sex == 'male')

 result = 'Mr. ';

 result << first_name << ' ' << name;

 return(result);

 };

1.3.4.1.1.10 View conditions

An ODABA view usually may contain a pre- and a post-condition (filter). When
defining ODABA views as operation path, however, conditions may be inserted at
any position in the operation path. In an operation path, there is no distiction be-
tween WHERE and HAVING and you may use the one or the other. Only, in a tra-
ditional OQL query, WHERE and HAVING differ in meaning, since the WHERE
condition is evaluated in the context of the result of the SELECT operation, while
the HAVING condition is checked after the GROUP_BY operation.

The argument for a WHERE or HAVING condition is an operand that is valid in the
context of the preceding operator (operation path) or of the result of the SELECT
or GROUP_BY operation (traditional OQL statement). Thus, WHERE and HAV-
ING simply work as setting a filter condition for a collection property.

1.3.4.1.1.11 Group by operation

1.3.4.1.1.12 Property handle operations

There are a number of generic property handle functions supported in operation
paths and expressions. Since generic property operations are a subset of property

 - 79 -

functions and differ in parameter lists, there is a separate topic 'Interface func-
tions', which documents classes and functions that can be calles from OSI expres-
sions and operation paths.

1.3.4.1.1.13 Expressions

Expressions can be referenced in an operation path by name or as inline expres-
sion. Referring to an expression by name requires, that an appropriate OSI ex-
pression has been implemented in the class the operation applies on (preceding
path element or calling property handle for the first path element). OSI expressions
can be defined in the resource database (dictionary) or must be loaded from an osi
folder when opening the database (see OSI_PATH in the data source definition).

When re-calculation of person's age has been defined in an OSI expression Cal-
culateAge in the person class, re-calculating the age for all persons could be
achieved by the following expression:

// referring to pre-defined expression

 PropertyHandle p_age(obh,"Persons()->CalculateAge");

 p_age.Execute();

// referring to inline expression

 PropertyHandle p_age(obh,

 "Persons()->{age = Date.Year -

birth_date.Year;}");

 p_age.Execute();

1.3.4.1.1.14 User interface functions

When an operation is critical concerning performance, it might be a good solution
replacing expressions by C or C++ functions. ODABA provides a OSI function in-
terface generator, which allows calling functions written in C or C++. When calling
interface functions e.g. for Person, you must define the functions in the Person
class as OSI interface functions and generating the class interface. Afterwards,
you may call functions from the interface rather than calling expressions.

This usually does not affect the access path, since the function interface supports
the same parameter types as an expression call.

1.3.4.1.1.15 Calling context class functions in an operation path

Since context class functions mainly support event handling, the parameters and
return values passed to and returned from context functions are strongly limited.
The only reason to allow calling context functions in an operation path is, that
sometimes important (maintenance) functionality is called via context class ac-
tions.

This makes a lot of sense in an OSI expression. Defining access paths in a pro-
gram environment, you usually have simpler ways of doing this.

- 80 -

Let us suppose, a function CalculateAge has been defined in the person context
class sPerson. The example below shows, how you may calculate the age for all
persons using an access path.

// using operation path for calculating the age

 PropertyHandle p_age(obh,

 "Persons()-

>ExecuteInstanceAction('CalculateAge')");

 p_age->Execute();

// using basic property handles for calculating the age

 PropertyHandle persons(obh,"Persons",PI_Update);

 while (persons.Next())

 persons.ExecuteInstanceAction("CalculateAge",NULL);

1.3.4.1.1.16 Special behavior of operation path

In general, a property handle opened for an operation path behaves similar to any
other property handle, i.e. it provides the same functionality. Nevertheless, the
operation path defines a virtual collection of instances, which is calculated, when
accessing the operation path. When accessing instances of a operation path fre-
quently and not in sequence, it is suggested to run the operation path and create a
transient or virtual collection for the result.

In contrast to property handles based on property, path properties or property
path, the operation path is read only in most cases. Only, when the result returns
persistent instances, updates might be possible in some cases. Simple operation
paths are paths containing a filter condition (where operation) or an order state-
ment (order operation).

 <Persons.OrderBy("sk_name").Where(age > 40)

Even though this operation path reorders persons and selects persons over 40,
the result set still refers to the original person collection and persistent person in-
stances. Other operations as Intersect or From (Join) also allow updates, because
tracing back to the origin is still possible. Partially, this is also true for the select
statement, as long as the property assignments in the select statement refer to
property paths or path properties, only.

This sounds rather difficult, but practically, you can update operation path proper-
ties, as long as you understand, what you are updating at the origin (this simple
rule is not 100% true, but it helps). When a property in an operation path has lost
its origin, the property handle will reject any modification attempt.

What usually not works in a virtual collection is locating instances by key. Other
virtual collections can be access forward, only. Hence, one has to check in the

 - 81 -

specific situation, what type of operation is supported by the operation path creat-
ing the virtual collection.

Operation paths are good for getting ad-hoc answers or processing query results
sequentially (forward). When more flexible access is required for accessing the
result, it is better to create transient or temporary collections from the access path
storing the selection.

 char *query = "Persons.Select(\

 pid, address, \

 STRING full_name = { \

 VARIABLES \

 bool first = true; \

 STRING result = 'Mrs. '; \

 set<MessageEingang> &mi = message(0).an; \

 PROCESS \

 if (sex == 'male') \

 result = 'Mr. '; \

 result << first_name << ' ' << name; \

 return(result); \

 }";

 Property ph(dbo,query,PI_Read);

Transient Properties

Transient properties are properties not stored to the database. You may define
transient properties (collections or attributes) known in the application, only, by
defining property handles for properties without reference to the database. Those
are typically attributes.

Defining transient collection requires more information which must be provided in
the datamodel (see "Using non-persistent references"). The datamodel allows also
defining transient attributes, references and relationships within persistent data
types. Defining and using transient attributes is rather simple and described in the
following section. Defining transient references or relationships is possible in vari-
ous ways depending on purpose. Different variants of defining transient properties
is described in structure topic "References" (data model).

 // transient attribute 'number'

 PropertyHandle number(0);

 // transient collection defined in the data model

- 82 -

 PropertyHandle retired(obh, "RetiredPersons", PI_Read);

 - 83 -

Using transient Attributes

Transient attributes are usually attributes properties in persistent instances, which
are not stored. Of course, each property handle referring to a transient attribute (
e.g. PropertyHandle(5)) is transient as well, but here it is clear, that the application
program has the responsibility for the property state.

This is a little bit more difficult for transient attributes defined in persistent instanc-
es as the age attribute in the Person structure of the Sample database. The prob-
lem is, that the age value changes from person instance to person instance and
must be re-evaluated when reading new instances.

Transient attributes can be evaluated on all three layers (application, business and
database). It is, however suggested, to calculate transient attributes either on the
business or on the database layer.

<html><head><meta name="qrichtext" content="1" /><style type="text/css">

p, li { white-space: pre-wrap; }

</style></head><body style=" font-family:'Arial'; font-size:10pt; font-
weight:400; font-style:normal;">

<p style=" margin-top:12px; margin-bottom:12px; margin-left:0px; margin-
right:0px; -qt-block-indent:0; text-indent:0px;">Initialize attribute on the ap-
plication layer</p></body></html>

You might evaluate transient attributes in the application, whenever required, i.e.
the person's age could be evaluated after reading a person instance. In this case,
the application developer must be aware, that each time before accessing the age
it needs to be evaluated. This works fine, as long as you found one and only one
place in the application, where this information is requested. In this case, it is
probably the most efficient way to solve the problem.

When the application becomes more complex, you would probably write a function
calculating and returning the value, in which case you really do not need a transi-
ent attribute. The advantage of transient attributes is, that the business or data-
base layer cares about updating the transient attribute in an optimal way.

<html><head><meta name="qrichtext" content="1" /><style type="text/css">

p, li { white-space: pre-wrap; }

</style></head><body style=" font-family:'Arial'; font-size:10pt; font-
weight:400; font-style:normal;">

<p style=" margin-top:12px; margin-bottom:12px; margin-left:0px; margin-
right:0px; -qt-block-indent:0; text-indent:0px;">Initialize attribute on the
business layer</p></body></html>

Since the application layer usually does not care about initializing transient attrib-
utes, this job must be done on the business layer or on the database layer. When

- 84 -

initialization of transient attributes is implemented on the business layer, the typical
way of handling initialization is in the read event handler (e.g. DBRead() handler in
a structure context class for Person). In this case, the application considers the
transient attribute as any other attribute in the structure instance.

In some cases, transient attributes need to be re-calculates in case of modify or
store events (the age must be re-calculated, when the birth date changes). When
the evaluation rule for the transient attribute becomes more complex, it might be-
come necessary, to re-calculate the attribute, whenever an operand value referred
to in the rule, changes.

The advantage implementing evaluation of transient attribute values on the busi-
ness layer is also, that you may decide later on, turning the transient attribute into
a persistent one.

Evaluating transient attributes from source

When the rule is simple as for the age attribute you may also provide an expres-
sion or function for initializing the value. The initialization code is called always,
when accessing the attribute via PropertyHandle functions (e.g. GetString() or
Get()). This does not work at all, when using typed property handles and access-
ing the age via C++ class member names, since this is an uncontrolled access
and the initialization is, for performance reasons, not called when reading the in-
stance, but when accessing the attribute.

The rule for calculating transient attributes can be defined in the source for the
transient attributes (assigned value or sources). An assigned value in ODL is con-
sidered as source, when it is not a constant (but an expression) Sometimes, eval-
uating transient attributes from source definition might be time consuming (e.g.
calculating the total income for a person and all its children and grand children
etc.)

Thus, transient attributes should be evaluated just in time and only, when being
requested.

Initializing transient attributes

When no source and no event handler has been defined, transient attributes are
initialized, when selecting or reading a new instance (Get(), NextKey() etc). When
selecting an instance, the transient attribute is set to the default value according to
the type or to the value which has been assigned as constant initialization value in
the data model (assigned value or initial value).

Transient vs. persistent attributes

The big deal with transient attributes is, that you avoid redundancy on your data-
base. Since transient attributes are calculated, when being accessed, you can be
sure, that the values are correct.

In some cases, evaluation of transient attributes may become a performance prob-
lem. Then you may turn transient attributes into a persistent ones, which are up-
dated only, when one of the evaluation operands changes but not any more, when

 - 85 -

reading the instance. This performs much better, when your application has many
read and less write access. Another advantage is, that updates on a persistent
field generate an instance updated event, which allows other applications to react
on a modification in the derived field. This is not the case, when using transient
attributes, since updating transient attributes generates application events, only,
which are not sent to other applications. Moreover, modifying transient attributes
does not alter the instance modification count. Thus, other applications are not
able at all to recognize updates on the instance.

- 86 -

Using non-persistent references

Here, we consider transient references defined in persistent data types as non-
persistent references. The next topic shortly describes how to use transient collec-
tions, which are not member of a complex data type.

Transient references defined in complex data types are used to create transient
links to one or more object types for a certain object instance. Thus, the value or
content of a transient reference may differ for each object instance.

1.3.4.1.1.17 Transient References

filter and selection settings

order settings

assigning value

-

1.3.4.1.1.18 Transient collections

 - 87 -

1.3.5 Buffered Access (buffer mode)

Buffered access provides fast access especially in client server mode. While read-
ing 10 000 instances per second on a local machine is no problem, sending 10
000 packages via the network may take several minutes. Using buffered access
will reduce the number of packages sent between client and server and thus, re-
duce the communication time extremely.

In order to activate buffered access, changeBuffer() needs to be called. In order to
deactivate buffer mode, you may call releaseBuffer() or changeBuffer() with buff-
ersize 0 or 1.

Buffered access can be used for reading collections with fixed data type, only. Try-
ing to enable buffered access for untyped or weak-typed collections will fail without
writing an error to the error log file.

When a filter has been defined for the property handle only those instances are
read into buffer that fulfill the filter condition.

Usually the buffer is filled automatically when attempting to reading an instance
that is not yet in buffer. The system tries to read as many instances as defined in
buffer size from the current position. Subsequent get() request will read from the
buffer as long as possible. In order to empty the current buffer cancelBuffer() can
be called. cancel() will cancel the current selection in the property handle but not
the instances in the buffer.

To position the buffer on a certain instance you can use the readBuffer() function.
For resetting the buffer you can use the cancelBuffer() function.

You cannot use block mode for views containing references. In this case the func-
tion will ignore the request and buffer size remains 1. There are also problems in
client/server mode when referring to sub property handles for references in in-
stances that have been reading in block mode. Moreover, updating instances read
in block mode is not allowed.

Read what is necessary

In many cases, only a subset of instances in a collection is displayed in the appli-
cation. In such cases it is more efficient to read only the instances displayed.
Reading them in block mode will not only reduce the access time but also reserve
the instances for the client.

Update notifications

When reading instances in block mode all instances in a block are registered as
being used by the property handle. Thus, the property handle will be notified when
one of the instances in a buffer has been updated. In an ADL application, the ap-
plication can react on this notification and, e.g. redisplay the line or list that has
been updated

- 88 -

Enable block access mode

You can activate the block mode simply by setting a buffer size. The number of
buffers allocated might be smaller than requested. For optimisation reasons the
maximum block size can be restricted in client/server mode on the server side by
the server option "MAX_BUFFER_SIZE".

When terminating a function or process, which has enabled the buffer mode, it
should reset the buffer mode by calling changeBuffer(1).

... :: function (Property &persons) {

 person.changeBuffer(50);

 // processing ...

 // reset buffer in order to re-read instances

 person.cancelBuffer(1);

 // processing ...

 // reset buffered read

 person.changeBuffer(1);

}

Special events

When using block mode, read events for instances as well as for properties are
generated when filling the buffer. When selecting an instance from the buffer into
the handle, a read event for the property handle is generated once more. In order
to check, whether the read event has already been executes the DateState can be
checked in the read event handler (see DBO_Read event).

 - 89 -

1.3.6 Property handle cache

In order to optimise access by key the property handle cache can be activated.
Usually the property handle cache is deactivated. The property handle cache can
be activated by calling changeCache() and passing a buffer count greater than 0.
In order to deactivate the cache, changeCache() can be called again passin 0 as
buffer count.

When the cache is active instances are saved in the cache and are read from the
cache when accessing instances by key value. Reading by index will not access
the cache. Hence the cache should be activated for random key access, only.

Using the cache in Write mode will lock all instances buffered in the cache. Updat-
ing an instance that is stored in the cache can be stored immediately using the
save function. Changing the selection in the cache will store the instance to the
cache, only.

In order to store all instances in the cache to database, flushCache() can be
called.

- 90 -

1.3.7 Client/server configurations

 - 91 -

1.4 Special Features

This chapter summarizes some special features provided with ODABA data ac-
cess.

- 92 -

1.4.1 Object Identities

ODABA differs between global and local object identity. While global identities are
global unique identifiers (GUID), local object identities (LOID) are unique within the
context of an ODABA database. Local identifiers are created by default for each
object instance. Global identifiers must be created explicitly or semi-automatically.
Local object identities can be used to access data instances within a process.
WEBapplications typically refer to local object identities.

LOIDs will not change as long as working in the same database. Copying the da-
tabase or reorganizing it may, however, change the LOIDs, since LOIDs are sort
of internal object addresses in a database.

LOID

Local object identities can be used for accessing data instances within an ODABA
database. Thus, they are typically used in WEB applications as parameter to WEB
pages that shall display information about a specific object.

LOIDs may change when copying an instance or the whole database. Since
LOIDs are stable only within a given database they should not be used persistent-
ly, i.e. outside the "process" that has determined the LOID, except they are used
just for identification but not for data access in the database (e.g. as id in an XML-
file).

Getting LOID

The local object identity can be provided in different ways. The LOID is a numeri-
cal value that can be retrieved from the property handle for the currently selected
instance. Another way is requesting the LOID from the index, which might perform
bettwe in many cases, since no instance need to be read.

The LOID can also be accessed as an instance property, because it is considered
a property of any persistent instance.

Property persons(dbhandle,"Person",PI_Read)

// get identity from selected instance

persons.get(Key("Miller|Paul"));

persons.loid();

// get identity string from selected instance

persons.GetString("__LOID");

// get identity by key

 - 93 -

persons.loid(Key("Miller|Paul"));

// get identity at position

persons.loid(27);

- 94 -

1.4.2 Versioning

The version concept describes the idea to maintain several instances for an object
in order to reflect several states for the object. Usually (but not necessarily), a ver-
sion is associated with a time point or interval, i.e. it reflects the state of an object
at a certain time (interval).

Maintaining versions enables a system to represent previous (historical) states of
an object.

A (data base) dimension defines the components necessary for identifying a data
item within the database. Many database systems are two dimensional in the
sense, that a data item is identified by an object instance identification (e.g. identi-
ty) and a property name. However, databases supporting different versions for
object instances need one more component in order to identify the version of an
object instance.

Version control in a most general way means that any object reflected in the data
base is reflected including its history. There is no need (and no database) to have
a continuous version update but successive time intervals might be defined in or-
der to create version slices. Within a time interval (version slice) all modifications
of the objects are treated as "corrections".

ODABA supports different types of versioning:

instance versioning

consistent versining

schema versioning

Instance versioning and consistent (object space) versioning cannot be mixed, i.e.
when consistent versioning has been activated, instance versioning will be denied.

Instance versioning

The simplest way of creating versions is creating instance versions. Instance Ver-
sions can be created to keep the previous instance state. This means, that attrib-
utes and relationships are saved and can be accessed later on in order to browse
the history.

Since "froozen" instance versions are not maintained, deleting instances may
cause access errors later on in old collections (references or relationships). There-
fore, this type of versioning is called inconsistent versioning. That means also, that
keys referenced in indexes may become inconsistent, since older instance version
attributes will not updated, when updating key attributes.

Instance versioning allows creating new versions for an instance whenever re-
quired and for each instance separately.

 - 95 -

Consistent versioning

In order to provide consistent versioning, version slices need to be defined fo the
complete object space. When creating a new version slice for an object space,
modifications on instances will create new instance versions automatically. Moreo-
ver, indexes and relationships of the older versions are duplicated before being
modified in the newer version. A roll back to an earlier version can recreate an
earlier state of the database.

Schema versioning

When considering the complex relationships in an ODABA dictionary, it becomes
obvious that it does not make sense to create versions of a single complex data
type. By creating schema versions, which are object space versions for the dic-
tionary, the complete state of the dictionary including type definitions, actions,
method definitions, forms and many other project resources, are preserved.

Using object space versions for creating chema versions enables ODABA to sup-
port online schema evolution, which means, that databases need not to be reor-
ganized after schema modifications. Instead, old instances are vonverted from
older schema versions to the current type definition. Schema evolution is support-
ed for any number of schema versions.

Versioning modes

In an ODABA database, only one of the version modes described above can be
supported at the time. In order to create a new version slice, the DBVersion utility
might be called or versions could be created by calling Ob-
jectSpace::createVersion(). When creating a new version, the current version will
get a termination time point, wich is the starting time point for the new version
slice. By default, the starting point is the current time. In order to start the version
slice later, one may, however, pass a timestamp referring to a timepoint in future.

Instance versioning

In order to create a backup for an instance at a certain time point, an instance ver-
sion can be created by calling Property::createInstanceVersion(). Creating an in-
stance version implies that all related ownined instances will create a version as
well.

Instance versioning and consistent (object space) versioning cannot be mixed, i.e.
when consistent versioning has been activated, instance versioning will be denied.

Version number are syncronized between an instance and its owning instances.
Thus, creating a version for an instance owned by another instance will automati-
cally crate a version for the owner instance.

Since ownership is unique in ODABA, i.e. each instance is owned by exactly one
collection, each instance is either owned by an extent collection or by another in-

- 96 -

stance (which is the owner of the collection owning the instance). Thus, instance
versioning always results in versioning an instance owned by an extent.

Instance version numbers are set consecutively. The oldest version is version 0.
Instance versioning runs in two modes.

individual instance versioning

synchronized instance versioning

Both types of versioning are disabled, when version slice has been set as data-
base versioning mode.

Individual versioning

Individual versioning creates individual versions for each instance tree, i.e. each
instance tree gets its own version numbers. In this case, version numbers do not
reflect a sequence of changes between different objects.

In order to activate individual versioning, the DBVersion utilityor Ob-
jectSpace::versioningMode() might be called.

No access version can be selected when running s database in individual instance
versioning mode, since version numbers do not have any meaning except the ver-
sion sequence for an individual instance.

// DBVersion Utility: set version mode

 DBVersion.exe c:\Sample\sample.dat -M:I[ndividual]

// set version mode from within a program: ObjectSpace osh;

 osh.open(mainClient(),"Sample",write,local);

 osh.versioningMode(individual);

Synchronized instance versioning

When running a database with synchronized versioning mode, each version re-
quest will create a new consecutive version number. Thus, version number repre-
sent a history, since lower versions are older than higher versions.

In order to activate synchronized versioning, the DBVersion utilityor Ob-
jectSpace::versioningMode() might be called.

An access version can be selected when running s database in synchronized in-
stance versioning mode, which causes the database reading instance data for
versions older or equal to the requires access version.

// DBVersion Utility: set version mode

 DBVersion.exe c:\Sample\sample.dat -M:S[ynchronized]

// set version mode from within a program: ObjectSpace osh;

 osh.open(mainClient(),"Sample",write,local);

 osh.versioningMode(synchronized);

 - 97 -

Consistent versioning

There is no need (and no database) to have a continuous version update but suc-
cessive time intervals might be defined in order to create version slices. Within a
time interval (version slice) all modifications of the objects are treated as "correc-
tions". Starting a new object space version, new versions of object instances are
created whenever the object instance is modified. The version interval can be a
fixed interval (e.g. each hour, weekly or monthly, yearly) or a variable interval ex-
plicitly defined by the database administrator.

In fact the version creates a new dimension for the database, which should not
affect the data model at all.

ODABA supports a differential version control which allows to create up to 65535
versions for a database (beginning a new version each day versions for 180 years
can be created in the database). In a database supporting full version control each
version reflects a consistent state of the database at a certain time, not only for the
instances but also for the relationships between them, as well as for indexes.

- 98 -

Defining versions slices

In order to define new version slice, the DBVersion utility might be called or ver-
sions could be maintained calling appropriate ObjectSpace functions. New version
slices can be defined, removed or timestamp of version slice might be changed.

When no versioning mode has been set so far, versioning mode is set to con-
sistent when terminating the first version slice. The version mode might, however,
als be set in advanve.

By default, the version 0 is defined for each object space as open version slice,
which will never terminate, until a new version slice will be created. The first ver-
sion slice has got an open starting point. The last version slice always has got an
open termination point. Time intervals for time slices cannot overlap and there are
never gaps between time slices.

One may reset a complete time slice, which will remove all changes made in this
time slice.

// DBVersion Utility: set version mode

 DBVersion.exe c:\Sample\sample.dat -M:C[onsistent]

// set version mode from within a program: ObjectSpace osh;

 osh.open(mainClient(),"Sample",write,local);

 osh.versioningMode(consistent);

Creatre new version slice

In order to create a new version slice, the DBVersion utility might be called or ver-
sions could be created by calling ObjectSpace::createVersion(). When creating a
new version, the current version will get a termination time point, wich is the start-
ing time point for the new version slice. By default, the starting point is the current
time. In order to start the version slice later, one may, however, pass a timestamp
referring to a timepoint in future.

// DBVersion Utility: Create new version slice

 DBVersion.exe c:\Sample\sample.dat -C -T(2010-01-01 00:00:00,00)

// create new version from within a program: ObjectSpace osh;

 osh.open(mainClient(),"Sample",write,local);

 osh.createVersion(DateTime("2010-01-01 00:00:00,00"));

Update version slice

In order to change version slice borders, version slice intervals might be updated.
Updating version slice termination date is possible via the DBVersion utility or by
calling ObjectSpace::changeVersion().

 - 99 -

Changing version slice borders is possible for active and future version slices, but
not for version slices, which had already been closed, i.e. where the termination
date has already expired. When updating the termination date for a version slice,
the timestamp value has to be between the termination data of the previous and
the next version slice. The termination date for the last version slice is always
open and cannot be updated.

// DBVersion Utility: Update version slice

 DBVersion.exe c:\Sample\sample.dat -U -V:5 -T(2010-06-01)

// Update version slice from within a program: ObjectSpace osh;

 osh.open(mainClient(),"Sample",write,local);

 osh.changeVersion(5,DateTime("2010-01-01"));

Reser changes made in a version slice

Resetting the current version for an object space to a previous version can be
done by calling the DBVersion utility or by calling ObjectSpace::resetVersion().
Resetting a version will remove all database version entries from the database
with a version number equal or above the version number to be reset. Finally, the
object space version number is reset to the predecessor of the version slice to be
reset.

// DBVersion Utility: Update version slice

 DBVersion.exe c:\Sample\sample.dat -R -V:5

// Update version slice from within a program: ObjectSpace osh;

 osh.open(mainClient(),"Sample",write,local);

 osh.resetVersion(5);

List version slices

In order to retrieve nformation about start and stop time for version slices, one
might call ile list operation of the DBVersion urility or call Ob-
jectSpace::versionInterval().

// DBVersion Utility: List version slices

 DBVersion.exe c:\Sample\sample.dat -L

// Update version slice from within a program: ObjectSpace osh;

 osh.open(mainClient(),"Sample",write,local);

 int i= 0, count = osh.versionCount();

 DateTime start, stop;

 while (i < count) {

 osh.versionIntervall(i,start,stop);

 // print i, start, stop

- 100 -

 }

 - 101 -

1.4.3 Copy model

Copying data is often rather dificult. Deep copy usually leads to infinitive recursion
or tends to copy large parts of the database. Copying instances only is often to
weak. ODABA provides some enhanced copy methods in addition, e.g. copying
primary relationships, only.

Thus, there are several ways of controlling copy operations from a application.
Nevertheless, this is usually not sufficiant, since copying linked objects is usually a
conceptual decision. Many copy problems can be solved by defining a copy mod-
el. A copy model can be defined by setting copy dependencies for each property.

Calling copy functions with the COPY_dependent option will copy related instanc-
es according to the defined copy model.

Since copy dependencies are part of property defintion in the data model, ODABA
supports only one copy model. Praxis, however, has shown, that the one copy
model wil propably solve 99% of your copy problems.

- 102 -

1.4.4 Check model

ODABA supports a simple check model by defining check levels for properties in
data type definitions. This allows running logical consistency checks against data
to be stored in the database. A more sofisticated check model can be defined by
setting up constaints for properties or complex data types or by implementing
check handler (DBCheck), which are called when check events are fired.

ODABA does not automatically generate cecks for logical database consistency.
In order to perfom locgical consistence checks, the CheckData() function must be
called.

 - 103 -

1.4.5 Recovery log-file

In order to track changes, the recovery log file feature might be enabled.

- 104 -

1.4.6 Workspace

Workspaces are a special ODABA feature, which provide persistent transactions.
Workspace transactions will survive the process and are available for any number
of processes. Results of a workspace transaction are stored in a separate data-
base and are copied to the original database when being consolidated by the user.

The workspace features can be enabled running the Workspace database tool.

 - 105 -

1.4.7 License services

In order to check customer licences for comercial database applications, the func-
tion might be called. Licence agreements are defined in the database definition in
the resource database. The licence key generated from the database definition for
the project and its applications can be used by the customer in order to initialize its
license.

- 106 -

1.5 Locking and write protection

 - 107 -

1.5.1 Locking Features

- 108 -

1.5.2 Write protection

 - 109 -

1.6 Transactions

- 110 -

1.6.1 Starting and committing user transactions

 - 111 -

1.6.2 Starting and committing workspace transactions

- 112 -

1.7 Database context programming

Context programming allows defining business rules for instances. ODABA distin-
guishes between context classes for complex instances (type context) and context
classes decribing the behaviour of property instances (property context).

Whithin a context class, system events generated by the system can be handled.
System events are generated, when an instance changes its state.

Context programming is provided for two reasons:

Property context classes

Property context classes can be implemented in order to provide specific event
handlers or business rules for elementary or collection instances. Property events
are generated, when the property instance changes its state or when a system
event is signaled for the property instance.

Type context classes

Type context classes can be implemented in order to handle events generated for
complex instances, i.e. when a complex instance changes its state (instance or
system state). The type context class is associated with the complex data type of
the instance.

Object space context

Object space context classes can be implemented in order to handle events for an
object space. Usually, object space context classes should be implemented only,
when the database is working with different object spaces. In order to link an ob-
ject space with a context class, a named object (object model resource) has to be
defined and a resource reference has to be assigned and associated with the cor-
responding context class.

The root object space is handled, usually, by the database context.

Database context classes

Database context classes can be implemented in order to handle events for a da-
tabase. In order to link a database with a context class, a database object (object
model resource) has to be defined and a resource reference has to be assigned
and associated with the corresponding context class.

 - 113 -

1.7.1 Associate context class with data model re-
source

In order to link a complex data type or property within a complex data type (object
model resources) to a context class, a resource reference has to be created for
the object model resource, which provides a unique resource identifier (number).

Context classes can be assigned in the ClassEditor tool, which also generates link
tables between context class neme and resource identifier. Those are compiled in
a C function (CreateContext()), which creates context class instances for complex
and property instances, wich are linked to a context class.

Any number of resources can be associated with one context class.

- 114 -

1.7.2 Handling events

There are different ways of handling system and instance events in ODABA. With-
in an application, events are typically handles by appropriate context classes. In
order to handle system and instance events by context class event handlers, cor-
responding event handlers have to be overloaded in the context class implementa-
tion.

Context class event handlers can be enabled and disabled calling appropriate con-
text class or property handle functions (BaseContext::enabled()).

Besides, generic event handler can be provided. Generic event handlers have to
be implemented on system interface level (PropertyHandle, EventHandler). Gener-
ic event handlers can be enabled or dsabled by calling appropriate system inter-
face functions (PropertyHandle::BlockEvents(), DBObjectHan-
dle::EnableEventHandling()).

Disable and enable context handlers

In order to disable context functions completely, you may set the contextEnabled
property in a DataSource definition to false. before opening the data source or
passing false in bContextEnabled parameter when opening a database. Disabling
context when opening a database or data source disables context behavior com-
pletely. i.e. context rules cannot be enabled from within the application while the
database is opened.

When context behaviour is enabled for the opened database (default), it might be
disabled partially. In order to disable a certain context (e.g. the type or property
context for a property handle), the appropriate context can be disabled(enabled by
setting the BaseContext::enable property.

Since the type context for a property depends on the type of the currently selected
property, disabling the type context becomes more difficult, when reading e.g. in-
stances for a weak-typed collection. Since reading an instance in a weak-typed
collection may change the current type of the selected instance, disabling the con-
text before reading the instance will not have any effect, when the new instance
has got another type. Hence, Property::setType() has to be called before reading
the instance in order to disable the proper context. This becomes difficult, when
the type of the instance to be read is not known. A possible solution is disabling
the property context and checking the property context state in critical context
functions.

Disabling context for weak-typed collections

 - 115 -

Since the type context for a property depends on the type of the currently selected
property, disabling the type context becomes more difficult, when reading e.g. in-
stances for a weak-typed collection. Since reading an instance in a weak-typed
collection may change the current type of the selected instance, disabling the con-
text before reading the instance will not have any effect, when the new instance
has got another type. Hence, Property::setType() has to be called before reading
the instance in order to disable the proper context. This becomes difficult, when
the type of the instance to be read is not known. A possible solution is disabling
the property context and checking the property context state in critical context
functions.

Simular situation happens when inserting instances to weak-typed or untyped col-
lections. In order to disable the proper context, i.e. the context of the instance to
be inserted, the type has to be set before disabling the context. In case of calling
Property::insertReference(), the type to be set should be extracted from the prop-
erty handle passed to the function.

// read handler for Empoyee (fragment)

int tEmployee::doAfterRead () {

 BaseContext &prop_ctx = highContext();

 if (prop_ctx.enabled() { // execute, when property context

enabled

 // do something

 }

}

// fragment:

// members is a weak.typed Person collection

 members.propertyContext().enabled(false);

 members.next();

 members.propertyContext().enabled(true);

Diabling context for transient properties and operation paths

Enabling or disabling property context for operation nodes is an important feature,
since the property context often is responsible for evaluating the result for a transi-
ent property or operation. After evaluating an operation result, the result will be
returned internally in a result property, which can be retrieved by calling Proper-
ty::resultProperty(). It is possible to disable property context for the result property
by providing the context for the result property and disabling it. Disabling context
for the result property, however, should be avoided, since it may produce unex-
pected side effects.

- 116 -

Usually, an operation or transient property does not ahve got an own instance, and
thus, no own type context. When a property handle refers to an operation path or
has been evaluated by the application, instances are provided in a result property.
When selecting an instance in a transient property handle, the instance is passed
from the result to the transient property handle. When disabling the type context
after selecting an istance, this works fine, but the instance owner is the result
property, i.e. practically, the type context for the result property has been disabled.
Similar to the property context for the result property, this may lead to unexpected
side effects and should be avoided.

// read handler for Empoyee (fragment)

int tEmployee::doAfterRead () {

 Property &person = property();

 // local clients will execute both blocks

 if (!isClient()) { // run on server side, only

 // do something

 }

 if (!isServer()) { // run on client side, only

 // do something

 }

}

Disable context for property

The property handle provides a property (Property::contextEnabled), which allows
disabling or enabling the context for a property handle. Since disabling context
sometimes becomes difficult (weak-typed collections, operations, transient proper-
ties), this property allows controling all context instances associated with the prop-
erty.

Disabling the context for a property handle includes disabling follwowing context
class instances associated with the property:

property context for the property

type context for all instance types (weak-typed or untyped)

property context for result property (operation and transient properties)

type contexts for instance types for the result property

When a result property of a transient or operation property changes, the contexts
for the result node are automatically enabled and contexts of the new result prop-
erty are disabled.

Scalability for context rules

 - 117 -

When running an object server application, context functionality may be executed
on the server, on the client or on both. The object server is the only server type,
which is able to run context functions.

In order to avoid running context function on client or server, the context function
have to check, whether they are running on a server or client. In order to run con-
text functions on client, only, !isServer() should be checked. !isClient() can be
checked in order to execute a context function on server side, only.

Since all clients, which are not object server clients, are considered as client, but
also as server, this works properly in each client server configuration.

- 118 -

1.7.3 Providing actions

Besides event handlers, actions can be implemented in a context class, which are
considered as business rules. Actions provide application independent behaviour,
which might be activated from whithin any application.

In contrast to event handlers, actions are not called implicitely by the system but
have to be called explicitly by the application (e.g. Proper-
ty::executeInstanceAction())

Passing data between context class and application

When calling an action,

 - 119 -

1.8 Data exchange

Data Exchange provides different ways of importing orexporting data from an
ODABANG database to extended comma separatedfiles (ESDF, CSV), to xml files
(OXML, XML) or to object interchange formatfiles (OIF). OIF is the proposed
standard format for exchanging data betweenobject-oriented databases (ODMG).

While the capabilities of ESDF (CSV) are limited, OXMLand OIF allow transferring
the complete content of a database. Even though XMLis the more common format,
OIF has the advantage that it should be supported byall object oriented databases
and it consumes less space.

Besides different file formats ODABANGprovides different data exchange technol-
ogies.

Command line tools

ODABANG provides two data exchange tools,one for import (Import) and another-
for exporting data (Export).

Import

Import provides features for importing a file with a valid import format into an
ODABA database. This is a preferred way for importing data periodically, in which
case a batch job cab be prepared and called whenever required.

It is a possible but not the most comfortable way for ad-hoc import process-
es,which can be solved better with the GUI Data Exchange or from within OSI
programs.

Export

Export provides features for exporting selected data from an ODABANG database
to a file with one of the supported external data formats. This is also a preferred
way for exporting data periodically, while ad-hocdata export becomes more com-
fortable from within OSI or by using the GUI DataExchange tool.

GUI tool

The Data Exchange GUI tool provides features for designing the content of a data
exchange and running the data exchange directly or creating a data exchange
definition file (data exchange schema).

The data exchange schema can be referred to later when calling the command
line tool or from within an OSI script.

The GUI tool provides the most comfortable way for designinga data exchange
schema. It allows also running the defined data exchange (e.g.for testing pur-
pose).

OSI Expression

- 120 -

Often, data exchange is simple and can be directly called from within an OSI ex-
pression. OSI OQL provides two built-in functions in order to import and export
data. Those functions are the same functions which are called from the command
line and the GUI tool.

ToFile

ToFile writes data from a defined collection to an external file with one of the de-
fined formats. The OSI query may create a view for the data to be exported. Since
the data exchange schema supports property selections, this is, however, not
necessary in most cases.

FromFile

FromFile imports data from an external file with one of the supported formats into
a collection. In general, one cannot import data into a view, but there are views
that are partially updateable, which would allow importing data as well.

Property

You may access an external file by property handle.This allows reading or writing
data from a program or from within an OSI expression. Property handles for exter-
nal files will not, however, import or export data automatically.

Opening a file via property handle activates the rich property handle functionality
for the external file. Although there are many features, which cannot be supported
for an external file, many helpful functions of property handle are still working for
this data source type.

Accessing external data via property handle does not require an exchange sche-
ma. A file schema, which does not define data mapping, would be sufficient. Since
file schemata for CSV files can be derived very simple in many cases, the external
file does not require additional information for being accessed.

The property handle access functionality is the base for the OSI functions From-
File and ToFile.

The file schema for external files can be defined in advance within the ODABANG
dictionary in terms of structure and extent definition. In this case, the external file
can simply be accessed via the extent name, similar to any other extents in the
database.

Open extern

Often, it is not very comfortable defining structure and property handles for exter-
nal files in the dictionary. Especially, CSV files often carry metadata in the head-
line, which contains sufficient information for extracting a file schema. Thus, prop-
erty handle supports an additional function for opening external data sources,
which are not defined in the dictionary. This allows accessing data ad-hoc and in
much simpler in many cases.

 - 121 -

In order to access external files that do not have a file schema definition at all, ad-
hoc schemata can be created for semi-structured files as XML, OIF and OEL. In
this case, the file is analysed and a file schema is derived from property names
passed with the data.

The copy model

Part of the object model is the copy model, which allows defining the instances
and references to be copied when importing or exporting data.

The copy model is defined by setting the copy level for references and relation-
ships. This allows defining copy rules for copying related instances for an instance,
which is going to be copied.

- 122 -

1.8.1 Data exchange definition

Data exchange definitions describe the file data source, the schema location and
format types for exchange file and schema. Usually, the exchange definition is
specified in a ToFile, File or FromFile operation, but this might be hidden behind a
more comfortable user interface.

File definitions are provided as predefined data exchanges in the dictionary or in
external file descriptions. Besides different external file formats, ODABA also sup-
ports different ways of external file descriptions.

Access functions

External files can be accessed in different ways.

File - Read or write explicitly

FromFile - Import from file

ToFile - Export to file

Depending on the required functionality, a file schema and a data exchange
schema should be provided.

File

The File() operation allows accessing an external file structure, which is defined by
an explicit or implicit file schema. External files can be read or written, but depend-
ing on the file structure, there are several restrictions. Most external file formats do
support appending data to the file, only.

External data sources can be accessed in OSI script files or access path via the
File() operation, but also via property handle.

// OSI or access path

VARIABLES

 set<VOID> &extFile = File(Path='c:/temp/my_persons.xml',

FileType='xml',

 Definition='c:/temp/my_persons.def',

Headline = false);

PROCESS

 while (extFile.next)

// ... processing;

 - 123 -

// C++ property handle

 Property extFile;

extFile.openExtern(os,"c:/temp/my_persons.xml","c:/temp/my_persons.

def",

 'xml',false);

 while (extFile.next())

// ... processing;

FromFile

The FromFile() operation supports importing data from external files into a data-
base. Importing files requires a (usually explicit) data exchange schema (extended
file schema), which provides a mapping to database locations in addition to the
structure definition of the import file.

Data can be imported in an OSI script, but also directly in an application program
via ODABA API functions. Calling import() with the property handle requires a self-
contained import file, i.e. the data exchange schema must be part of the import
file. In order to import data for files with a separate exchange schema, an opera-
tion path can be used, which is more flexible, since it allows defining different loca-
tions for the exchange schema.

// Import external data to extent Persons

// OSI version

 Persons.FromFile(Path='c:/temp/my_persons.xml', FileType='xml',

 Definition='c:/temp/my_persons.def', Headline =

false);

// C++ version

 Property persons(os,"Persons",Update);

 persons.import("c:/temp/my_persons.oif");

// C++ operation path version

 Property persons(os,"Persons",Update);

 Property impPh(persons,

 "Path='c:/temp/my_persons.xml',

FileType='xml', \

 Definition='c:/temp/my_persons.def', Headline

= false");

- 124 -

 impPh.execute();

ToFile

The ToFile() operation supports exporting data from a database to an external file
format. Es well as the FromFile() operation, ToFile() requires a data exchange
schema.

Data can be exported in an OSI script, but also directly in an application program
via ODABA API functions. Calling export() with the property handle requires a self-
contained export file, i.e. the data exchange schema must be part of the export
file. In order to export data for files with a separate exchange schema, an opera-
tion path can be used, which is more flexible, since it allows defining different loca-
tions for the exchange schema.

// Import external data to extent Persons

// OSI version

 Persons.ToFile(Path='c:/temp/my_persons.xml', FileType='xml',

 Definition='c:/temp/my_persons.def', Headline =

false);

// C++ version: export Persons to an OIF file

 Property persons(os,"Persons",Update);

 persons.export("c:/temp/my_persons.oif");

// C++ operation path version

 Property persons(os,"Persons",Update);

 Property expPh(persons,

 "Path='c:/temp/my_persons.xml',

FileType='xml', \

 Definition='c:/temp/my_persons.def', Headline

= false");

 expPh.execute();

File access parameter

Referring to external files requires a specific parameter list, which defines file loca-
tion and structure. The parameter list may contain the following named parame-
ters:

Path - file location

FileType - Type of file to be read or created

 - 125 -

Definition - file and exchange schema

Headline - headline option

FileExtent(Path='c:/temp/my_persons.xml', FileType='xml',

 Definition='c:/temp/my_persons.def', Headline = false)

File path

At least the file path must be passed as operand to the file access functions. Addi-
tional file options can be passed for providing file and exchange schema and file
type.

The path name points to the location for storing the file. The complete path name
should be enclosed in quotes (single or double) to avoid misinterpretations. The
default for path is 'Console', which will direct the input or output to the screen.

File type

ODABA supports different external file types. The file type need not to be de-
fined,when the file name passed in Path has one of the following extensions:

CSV, ESDF - extended self delimiter file (.esdf, .csv)

OXML - ODABA xml file (.oxml, .xml)

OIF, OEL - object interchangeformat (.oif, .oel)

BINA - binary flat file (.bina)

File type definitions are not case sensitive.

File schema

The file or exchange schema can be provided as definition in a dictionary, in which
case the structure_name refers to a structure definition in the dictionary. Beside
property definitions (file schema), data sources can be assigned, that are referred
to in case of import or export operations.

The file or exchange schema might provided in a separate file as ODL (.odl),
OXML (.oxsd) or ESDF (.esdf) definition files, in which case the location is passed
as quoted string pointing to the file location. The format of the file schema need
not to correspond to the format of the data file, i.e. one may pass an ODL ex-
change schema for importing an XML file.

When the file schema is not passed explicitly, the file schema is supposed to be
part of the external file (e.g. headline in an ESDF file). The file or exchange sche-
ma can also be provided together with the data (and in the format according to the
file type). In this case, the definition format has to correspond to the format of the
data file.

BINA - no file definition supported in the file

CSV, ESDF - ESDF headline format

- 126 -

OXML - OXSD schema definition

OIF - ODL definition

The system determines the proper type for the definition file from the file exten-
sion. When no valid extension has been detected, the system tries to analyze the
definition file type by file content:

first character '<' : OXML format

first character '{' or beginning with a word followed by a separator : ESDF for-
mat

Beginning with schema keyword: ODL format.

Beginning with META: OEL format

Headline option

The headline option indicates, whether the external data file includes the file
schema (typically the headline in CSV or ESDF files). Either headline or schema
location must be provided in order to obtain the file schema for input operation.

In case of output operation, the file schema is written to the export file prior to the
data. Existing schema definition in the output file header will be ignored, i.e.the
exchange schema must be defined in a separate definition (database schema or
schema file). When no exchange schema has been provided, the input structure is
used as an implicit exchange schema, i.e. all attributes and depending object in-
stances are exported to the output.

When defining both, the schema location is used. In some cases, schema location
is verified against the headline definition.

 - 127 -

1.8.2 Data Exchange schema

A data exchange schema is required for any type of data exchange in order to
provide the mapping rules between internal and external data. The data exchange
schema is an intensional schema, i.e. it refers to structure definitions, only. Thus, a
data exchange schema can apply on any collection (database) or file (external
data source), which fits into the rules defined in the data exchange schema.

Data exchange schemata can be provided in different formats. The format of the
dataexchange schema does not depend on the file format for the external data-
source. Thus, you may still use the same data exchange schema definition,
eventhough you have changed the format of the external file. Data exchange
schematacan be provided in one of the following formats:

Dictionary - Structure definition in an ODABA dictionary

CSV/ESDF - Headline definition format

OSI ODL - Schema definition language

OXML - extended XML schema definition

The data exchange schema is an extension of a file schema, wich defines addi-
tional mapping rules for assigning external data fields to database properties. Da-
tabase property correspondences are always defined in the source attribute for the
file property.

ODL and XML schema definitions follow the common rules for structure definitions
in an ODABA schema definition. ESDF exchange or file schema definitions are an
extension of the CSV headline, i.e. the csv headline is a special case of an exter-
nal file schema.

// ESDF exchange schema for DSC_Keyword

name = definition.name;

number = __AUTOIDENT;

lex_term { name = definition.name; number = __AUTOIDENT }=

lex_base[0]

Dictionary exchange schema

Describing an external file structure in the dictionary might be the most comforta-
ble way for complex external data structures. External files can be defined as
structure definitions in the dictionary. Structure definitions for external files may
consist of attributes, references and exclusive base structures. External file defini-
tions must not contain relationships.

- 128 -

Assigning a data source to a field in an external file is possible by means of the
property source definition for properties. The first (and only) source definition for a
property is considered as database location for the external field.

ESDF exchange schema definition

The definition for CSV or ESDF (Extended Self Delimiter Files) is an extension of a
CSV file headline. In the minimal case itonly consists of variable names.

In order to support more complex data structures in a comfortable and CSV com-
patible format, we introduced ESDF, which is a CSV extension, since it supports
complex attributes as well as references. In addition, the definition of mapping
rules has been added to the file schema in order to provide exchange schema def-
initions.

Specification

The rules for defining a CSV or ESDF file are described in the subsequent BNF
definition. All fields are assumed to be presented as ASCII text (string data type).

The BNF describes the ESDF header. In contrast to CSV, ESDF limits field delim-
iter to ';', tab and '|', which can be used simultaneously. Undefined BNF symbols
name, number and constant are standard symbols.

The file or exchange schema for an ESDF file is usually passed in the first line of
the file (headline). I might be passed, however, also separately from the data file
or dictionary.

name

A name or identifier is a field name which usually starts with an alphabetic charac-
ter or underscore and contains ASCII characters and numbers, only.

Number

In this context a number is an integer value.

constant

A constant is either a number, a string constant or a Boolean value.

Usage

The file or exchange schema for an ESDF file is usually passed in the first line(s)
of the file (headlines). It might be passed, however, also separately from the data
file or dictionary.

// ESDF headline definition

f_pid = pid; fname = name; f_first_name = first_name; f_birth_date=

birth_date; f_sex = sex; f_married = married; f_income = income;

f_location {f_zip = zip; f_city = city; f_street= street; f_number

= number} [3] = location

 - 129 -

Defaults

When names in the headline are identical with databasesource names, source
assignments can be omitted:

pid; name; first_name; birth_date; sex; married; income; location

{zip; city ;street; number } [3]

Schema file

When providing the exchange or file schema separately instead of providing it in
the headline, the definition may contain line breaks:

// Separate exchange schema

f_pid = pid;

f_name = name;

f_first_name = first_name;

f_birth_date = birth_date;

f_sex = sex;

f_married = married;

f_income = income;

f_location {

 f_zip = zip;

 f_city = city;

 f_street= street;

 f_number = number

} [3] = location

ODL exchange schema definition

The ODL schema definition is a script equivalent to the dictionary definition. It fol-
lows the same rules as defining a structure in the dictionary.

In order to provide self-contained OIF files, the ODL schema can be passed on top
of an OIF file.

Specification

The BNF describes the common structure of an OIF file. The OIF file might be
preceded by an exchange schema definition, which must start with the SCHEMA
keyword. The details for schema definitions are described in OSI language refer-
ence.

- 130 -

The example below shows a complete definition for a Person data exchange
schema.

SCHEMA {

 STRUCT XAddress {

 STRING f_zip SOURCE(zip);

 STRING f_city SOURCE(city);

 STRING f_street SOURCE(street);

 STRING f_number SOURCE(number);

 };

 STRUCT XPerson {

 ATTRIBUTE {

 STRING f_pid SOURCE(pid);

 STRING f_name SOURCE(name);

 STRING f_first_name SOURCE(first_name);

 STRING f_birth_data SOURCE(birth_date);

 STRING f_sex SOURCE(sex);

 STRING f_married SOURCE(married);

 STRING f_income SOURCE(income);

 };

 REFERENCE XAddress f_location[3] SOURCE(location);

 };

};

Usage

Since OIF is able to transfer complex data, the file or exchange schema is usually
defined in the dictionary. In order to transfer self-contained files, it is, however,
sugested to create OIF files containing data and schema.

OEL exchange schema definition

OEL (object exchange language) is a predecessor of OIF and rather similar to it.
OEL is supported for compatibility reasons, only. Normally, it is sugested using
OIF rather than OEL.

 - 131 -

In contrast to OIF, OEL does not support locators. Thus, links to other object in-
stances can be provided by key attributes, only, which is supported by exporting
data. Thus, OEL is sufficient for importing data but will not work properly for ex-
porting data in many cases.

Similar to OIF, OEL files may contain an exchange schema definition in order to
provide self-contained OIF files.

Specification

The BNF describes the common structure of an OEL file. The OEL file might be
preceded by an exchange schema definition, which must start with the SCHEMA
keyword. The details for schema definitions are described in OSI language refer-
ence.

The example below shows a complete definition for a Person data exchange
schema.

SCHEMA {

 STRUCT XAddress {

 STRING f_zip SOURCE(zip);

 STRING f_city SOURCE(city);

 STRING f_street SOURCE(street);

 STRING f_number SOURCE(number);

 };

 STRUCT XPerson {

 ATTRIBUTE {

 STRING f_pid SOURCE(pid);

 STRING f_name SOURCE(name);

 STRING f_first_name SOURCE(first_name);

 STRING f_birth_data SOURCE(birth_date);

 STRING f_sex SOURCE(sex);

 STRING f_married SOURCE(married);

 STRING f_income SOURCE(income);

 };

 REFERENCE XAddress f_location[3] SOURCE(location);

 };

};

- 132 -

Usage

Traditionally, OEL has been using for importing data from MS Word documents.
Hence, OEL is still suported in order to keep old import functions running. In any
case, OIF is the better choice and should be used instead.

XML exchange schema definition

An OXML schema is another equivalent for a dictionary structure definition and
can be used instead of an ODL or dictionary definition. Usually, XML schema defi-
nitions are more dificult to provide than ODL, but In order to provide self-contained
XML files, the OXML schema can be passed on top of an XML file.

A better way, however, is to provide a separate schema file and make this availa-
ble in the network. Than, OXML files may refer to the exchange schema defined in
this XML schema definition.

 - 133 -

1.8.3 External data formats

ODABA supports different external file formats, which can be accessed directly via
property handle access functions or via file functions File(), ToFile() and From-
File().

Beseides external file formats, several external file schema formats are supported.
External file format and file schema format need not to correspond to each other,
i.e. you may describ a flat file, which does not have a file schema format, in terms
of an OIF schema or an OIF file in terms of an ESDF schema.

External file formats

ODABA supports the following external file types:

CSV, ESDF - extended self delimiter file (.esdf, .csv)

OXML - ODABA xml file (.oxml, .xml)

OIF - object interchangeformat (.oif)

OEL - object interchangeformat (.oel)

BINA - binary flat file (.bina)

File type definitions are not necessary but may held identifying the storage type for
an external file by default.

- 134 -

Flat or binary files

Binary files are files with a fixed data structure. Binary files can be considered as
the most compressed format for data exchange. In contrast to other file formats,
binary files do not support subordinated collections.

There are several limitations in using binary files.

Binary files always require a separate file definition (no headline definition sup-
ported).

Binaryfiles do support arrays with fixed number of elements, only.

In contrast to all other external data formats, which are limited to ASCII data, bina-
ry files may contain any type of data.

 - 135 -

ESDF or CSV format

The Extended Self Delimiter File format is an extension of the CSV format. ESDF
files contain one record per line, i.e. line break indicated the end of a record. In
contrast to CSV, ESDF supports complex attributes and reference collections with
variable number of instances.

Since ESDF does not require any tags, it is an efficient way of exchanging large
data files. On the other hand, it requires fields being defined in a correct sequence.

ESDF files may carry the file or data exchange schema directly in the data file
(headline). The file or data exchange schema can also be defined in the diction-
aryor passed separately in any file schema definition format.

Specification

ESDF has a simple BNF specification as described below. As line break, new line
(NL), carriage return (CR) or both are accepted after headline and between data
lines. Headlines are optional. File definitions might be also passed separately and
in any other format.

New lines are not considered as instance separator when being defined whithin a
locator,anitem set or an item block.

Data exchange schema

ESDF files may contain a headline defining the file or exchange schema. Since
headlines need not differ syntactically from data lines, the file definition must pass
the headline option in order to indicate, that an ESDF file contains a headline at
the beginning.

When passing the exchange schema in the data file headline, the schema must be
defined completely in the first line.

Delimiters

ESDF defines a reserved set of delimiter characters. Delimiter characters must not
appear in values without being quoted. In contrast to CSV, ESDF requires addi-
tional delimiters for instances and collections.

Field delimiter

Characters ';', '|' and '\t' (tab) are considered as field delimiters. Field delimiters
may appear also mixed, i.e. also when creating an ESDF file using '\t' as field sep-
arator, values containing a ';' must be enclosed in string delimiters.

String delimiter

" and ' are considered as string delimiters. The starting string delimiter must be the
terminating delimiter, too. Starting a string value with ", the value may contain ' and
reverse. When starting string delimiters need to be coded within the string, those
must be preceded by an '\'.

- 136 -

'my name is"Paul"' // valid

'my name is\"Paul\"' // valid, same as above

'my name is\'Paul\'' // valid

"myname is 'Paul'" // valid, same as above

Instance delimiter

Instance delimiters '{' and '}' are used to define begin and end of complex (struc-
tured) data values. Instance delimiter may appear within value collections but also
outside collections. Instance delimiters are not required for base structure mem-
bers.

Collection delimiter

Collection delimiters '[' and ']' are used to define value or instance collections.

 - 137 -

Object Interchange Format (OIF)

- 138 -

ODABA XML format

 - 139 -

1.9 ODABA data storage formats

ODABA provides the feature of storing data in different database storage formats.
Following data storage types are supported:

Relational databases (ORACLE, MySQL, MS SQL Server)

OXML (XML based on ODABA schema extensions)

This does not mean, that ODABA is able to access any relational database or xml
file. When running ODABA on external data formats, those are managed by ODA-
BA in order to keep all extensional features provided by the system. Thus, external
formats must follow some basic rules defined for the different database formats.

- 140 -

1.9.1 Storing ODABA data in relational databases

ODABA supports storing data in several relational databases. This is not the most
efficient way of accessing data stored in ODABA, but it provides additional data
access by well known SQL tools. Thus, running ODABA based on an SQL data-
base might increase acceptance by customers.

The following SQL databases have been chosen for ODABA support:

ORACLE

Microsoft SQL Server

My SQL

This list might be expanded when ever required.

RDB access architecture

Whenrunning ODABA with a relational database, instances data is stored in rela-
tional tables. Optional, the administrator may decide whether to maintain m:n rela-
tionships in the RDBM or not. Thus, one may store data tables, only or data tables
plus relationship tables.

In order to obtain extended ODABA features as collection events, extended in-
stance and collection information etc. an additional database (Object Manager) is
required.

Extended information as update counts for instances or collections, weak-typed or
untyped collections or __IDENTITY/type mapping could hardly be handled in an
relational database. Thus, an Object Manager maintains collections (relationships
and references), but also update counts, locking and persistent write protection.

All services as transaction management, locking or workspace features are man-
aged by ODABA, since SQL databases do not provide sufficient support e.g. for
locking the children collection of a person. Moreover, ODABA cares about extend-
ed deletion features, maintaining inverse references and other specific object-
oriented database features.

OR mapping rules

Since the information content of a relational database is a subset of the infor-
mation, that can be stored in an object oriented database, mapping rules can be
defined for the "relational data" in the object-oriented database.

Instance data is stored in tables having the same name as the complex data
type defined in the ODABA object model. All tables get an additional proper-
ty SYS__LOID, which held the unique object identity for each instance. All
relational tables are indexed by SYS__LOID.

 - 141 -

Complex attributes are provided as resolved attribute names including dots,
which are part of the attribute path (address.city). This usually requires
apostrophes when referring to attribute names. Attributes in exclusive base
types are not prefixed.

When a data type inherits shared from its base structure, attributes are stored
in separate table for the base type using the same names as in the data
model definition. An attribute with the name of the base type member is
added to the table, which refers to the base type table entry LOID
(SYS__LOID) value for the base instance in the referenced table. When the
data type inherits exclusive from its base type, attributes of the base type
become attributes of the inheriting data type.

Enumeration values are stored as numerical data. Lookup tables are generated
and filled with the enumeration name. Enumaration tables contain two at-
tributes: code, name.

Enumerator attributes get a reference to the enumerator table.

References without collection identity (single references, single not updatable
relationships)

typed collections create a link attribute with the reference/relationship name.
The link attribute creates a reference to the target type table.

ALTER TABLE "GeoNameLand" ADD ("kontinent" NUMERIC(20,0) REFER-
ENCES "GeoNameKontinent");.

Weak- or untyped collections create a link with the reference/relationship name
without reference.

Generic attributes are considered and handled as references.

All references and relationships, which have got a collection identity (multiple
and updateable references)

are stored in the table as attributes with its property name proceeded by double
underscore (children --> __children), which contains the identity referring to
the referenced collection.

ALTER TABLE "GeoName" ADD ("__timezone" NUMERIC(20,0));

primary relationships will create a m:n relationship table constructed from the
current type name and the relationship name (cars --> Person__cars)

CREATE TABLE "Person__cars"

(

"SYS__LOID" NUMERIC(20,0) NOT NULL REFERENCES "Person",

"SYS__REF" NUMERIC(20,0) NOT NULL REFERENCES "Car",

PRIMARY KEY ("SYS__LOID","SYS__REF") USING INDEX TABLESPACE
"ODABA_INDEX"

- 142 -

);

Types referred to in references and owning relationships will get an addi-
tional owner attribute

ALTER TABLE "Car" ADD ("cars__Person" NUMERIC(20,0) REFERENCES
"Person");

MEMO (CLOBs - large character objects) fields and BLOBs (large binary ob-
jects) are stored in two separate tables - (SYS__BLOB and SYS__MEMO) -
which consist of the SYS__LOID attribute and a CLOB or BLOB field with
name SYS__ENTRY.

One to many relationships are stored as attributes with the property name of
the reference or relationship. The (link) attribute contains the SYS__LOID
value for the referenced instance.

References, which always have one owner but no link field to it, will get an ad-
ditional owner attribute with the name SYS_OWNER that contains the
SYS__LOID value of the owning instance.

Many to many relationships and singular updateable relationships can be
stored optionally in additional tables, which get the name according to the
involved primary relationship name and the data type defining the primary
relationship separated by '__' (e.g. Person__children).

The last rule is optional, since in an object modelthere are often more than 10
many to many relationships defined for an objecttype, i.e. the generated relational
database might contain e.g. 100 data tables, but 1000 relationship tables in addi-
tion. Maintaining all those tables might become a performance problem. Thus, the
administrator may choose when generating the relational model (table state-
ments), whether to support many to many relationships in the relational data stor-
age or not.

Limitations

Running ODABA with a relational database underneath includes some restrictions.
The first and most important one is, that the relational data storage might be ac-
cessed by SQL tools in order to perform queries, but not in order to update the
database. All update operations must pass through the object manager. Other-
wise, the Object Manager database might become inconsistent.

Since relational databases usually do not support namespaces for tables, data
model definitions running with relational data storage must not define persistent
namespaces. Instead, type names should be prefixed or marked in any other way.
In the model definition, you may define object types in modules or namespaces,
but those must not be marked as active namespaces, i.e. type names must be
unique with the dictionary.

In order to guarantee proper maintenance of inverse relationships, ODABA sup-
ports updateable relationships. In a relational database, updateable relationships

 - 143 -

behave similar as many to many relations. This means that queries against the
relational database must include an additional join operation when referring to sin-
gular links.

Property names in exclusive base types must be unique in order to avoid naming
conflicts.

Names of complex attributes are resolved. In case of deep nesting, this might ex-
ceed name length limits in the target system. Hence, attribute nesting and name
length should be selected in a way that meets the target system requirements.

Instance versioning is not yet supported for relational storage.

Other limitations are of minor importance. There are several features that require
specific ODABA storage. Thus, when using workspaces, all workspace data is
stored in ODABA databases and is accessible via SQL only, when the workspace
data has been consolidated to the root base.

Similar, long external transactions require an external ODABA transaction data-
base and data becomes available only after committing the external transaction.

__IDENTITY values are the base for all links and instance identification and must
not be changed after being created.

Implementing an access package

Implementing an access package for supporting another not yet supported type of
relational database means implementing an RDB access package, which inherits
from RootBase_RDB. The SQL_RootBase package provides some basic func-
tionality that is helpful for most RDB access packages (conversion tables, link
cache etc).

The typical implementation of an access package is documented in
XSQL_RootBase class, which provides a list of functions to be implemented in
order to support an SQL access package.

The access logic is mainly managed by the SQL_RootBase base class. In order to
provide an enhanced access management, the following functions have to be
overloaded in the access package:

DeleteInstance

LinkInstanceIntern

LocateInstance

StopCommit

UnlinkInstanceIntern

UpdateInstance

- 144 -

In this case, ODABA functionality implemented in this functions have to be han-
dled with care.

Implementing an access package

Implementing an RDB access package requires overloading the following func-
tions in RootBase_RDB:

Close

DeleteRow

EndRow

GetColumn

GetRootBase

GetRow

InsertRow

LinkInstance (referencec and relationships)

Open

RBType

UnlinkInstance (relationships, only)

UpdateColumn

UpdateRow

destructor

Instance operations are introduced by a row functionn (GetRow(), InsertRow(),
UpdateRow(), DeleteRow()), which usually locate the requested row for the opera-
tion. After locating a row in a table, several column function calls are made
(GetColumn(), UpdateColumn()) in order to read or update column values. Column
values are provided as character data. Finally, the EndRow() function is called in
order to indicate the end of row processing. The function might be overloaded in
order to perform final row processing.

Appart from updating object attribute values, link information will be updated after
updating attribute values in instances. In order to update link information,
LinkInstance() and UnlinkInstance() have to be implemented. Both functions are
called only ones for a table row in order to create or delete a parent (reference) or
m:n (relationship) link.

In case of parent links, the link value has to be updated in the attribute passed to
the function. In case of a relationship link, a mapping row has to be inserted into
the m:n relationship table.

Optional, the following functions can be re-implemented:

 - 145 -

LinkInstanceIntern

StartCommit

StopCommit

TACancel

TAStart

TAStop

UnlinkInstanceIntern

Data conversion

Data but also table column names require conversion. In order to convert column
and table names properly, the base class SQL_RootBase provides a name con-
version function Name(). From the name and the database specific maximum
name length, the function constructs an appropriate database specific table or at-
tribute name, which correspond to the name generated as table or attribute name
when generating the table definition. All functions receiving table or attribute
names, receive the original ODABA type or property names, which have to be
vonverted to table or attribute names.

Attribute values are always passed in string formats (ASCII or Latin1) with a termi-
nating 0. Following data formats are passed:

string - ASCII string (latin1)

integer - "[-]n*[.n*]" (decimal point according prcision definition)

float - "[-]n*[.n*][E[-]n*]"

time - "hh:mm:ss,hs"

date - "yy-mm-dd"

datetime - "yy-mm-dd hh:mm:ss,hs"

guid - "A-xxxxxxxx-xxxxxxxx-xxxx-xxxx-xxxxxxxx"

Values have to be passed in both directions referring to the same format, i.e. the
access package will obtain values in the format above when updating columns and
has to return values in an approriate format when reading values.

Transaction management

Transaction management is mainly organized on ODABA level, i.e. a request of
storing instances to the database is submitted by ODABA only, when committing a
transaction. Thus, all update requests are send to the root base in the commit
phase.

There are, however, RDB specific requirements passed to RootBaseRDB while a
transaction is running. Thus, LinkInstance() and UnlinkInstance() requests are sent
while running a transaction and will be cached by the RootBase_RDB.

- 146 -

As long as StartCommit() has not been called, the access package can assume,
that access is read-only. This is true also after EndCommit(). TACancel() will emp-
ty the link cache in case of a cancelled transaction.

When committing a transaction, StartCommit() is called in order to indicate the
beginning of the commit request. EndCommit() indicates, that committing data has
been finished. Between StartCommit() and EndCommit() all Updated() requests
are submitted by ODABA. Update() requests before StartCommit() and after End-
Commit() are illegal and must not happen.

By default, link requests are submitted in the EndCommit() function. The function
reads all link and unlink requests from the cache (link_cache) and call
LinkInstance() or UnlinkInstance() in order to handle the request. Those functions
must be overloaded in the appropriate access package.

For write optimization, it might, however, be more efficient processing the link
cache in the access package. in this case, outstanding link requests must be writ-
ten to database before terminating the commit phase. Link requests can be ob-
tained from the link cache (link_cache.RemoveHead()).

Create, delete and update instance

New entries are usually created via an update request. In order to distinguish new
instances from old instances, the data position (acb::GetPosition()) can be
checked. In case the position is 0, the instance is considered as new instance. In
order to mark the instance as existing after creating is, the position should be set
to a positive value (loid is suggested).

In order to maintain update counts, SQL_RootBase::Update() should be called
after each update operation, as well as SQL_RootBase::Delete() should be called
at the end from the overloaded Delete() functions.

 - 147 -

1.9.2 XML database

ODABA provides features for accessing XML files like an ordinary ODABA data-
base. The idea is not maintaining persistent data in an XML file, but opening the
posibility accessing XML data by the same means as accessing an ODABA data-
base.

XML schema extensions

ODABA schema definitions require some ODABA specific schema extensions.
Schema extensions are available at www.odaba.com/OXMLExtensions.xsd. Using
this schema extensions allow providing complete schema definitions via an XML
schema.

A summary of ODABA XML schema extensions is given in the definition below.

- 148 -

1.10 Internet Communication Engine

Ice is our decision to bind several external programming languages to our cpp li-
brary. These languages are cpp, java, .net, visual basic, python, php and ruby.
The Ice development is ongoing and it is likely that a new succeeding language
will be implemented.

The decision is in favour of the still existing COM interface as our unix support
evolved and recent webapplications are requested as linux installations.

