
- 1 -

01101001001110010101101011
01010010111011100010111010
10101011101100101001010110
10101010011010110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100110100
10011100101011010110101001
01110111000101110101010101
11011001010010101101010101
00110011010010011100101011
01011010100101110111000101
11010101010111011001010010
10110101010100110011010010
01110010101101011010100101
11011100010111010101010111
01100101001010110101010100
11001101001001110010101101
01101010010111011100010111
01010101011101100101001010
11010101010011001101001001
11001010110101101010010111
01110001011101010101011101
10010100101011010101010011
00110100100111001010110101
10101001011101110001011101
01010101110110010100101011
01010101001100110100100111
00101011010110101001011101
11000101110101010101110110
01010010101101010101001100
11010010011100101011010110
10100101110111000101110101
01010111011001010010101101
01010100110011010010011100
10101101011010100101110111
00010111010101010111011001
01001010110101010100110011
01001001110010101101011010
10010111011100010111010101
01011101100101001010110101
01010011001101001001110010
10110101101010010111011100
01011101010101011101100101
00101011010101010011001101
00100111001010110101101010
01011101110001011101010101
01110110010100101011010101
01001100110100100111001010
11010110101001011101110001
01110101010101110110010100
10101101010101001100101001

run

ODABA Database and tools

ODABA NG

- 2 -

Summary

 ODABA is a terminology-oriented database system, which might be considered as
extension of an object-oriented database system. Adding terminology orientation
includes supporting terminology-based analysis, documentation support during all
development phases and final document presentation.

From a technical point of view, ODABA fulfills technical standard requirements as
locking and transaction mechanisms, several client/server model etc. But ODABA
supports even more features, as usual object-oriented databases do (aggregation
schema, extensive data exchange features, run-time type extensions, various
client server models, various versioning strategies, support for different data stor-
age formats etc.).

Besides technological diversity, ODABA provides terminology-based technologies
and development tools for analysis, modeling and design, implementation and
test. The ODABA GUI framework supports object-oriented GUI design based on
defined database model.

ODABA completely transforms the terminology model into an object-oriented data-
base model, which, again, might be transformed into a relational database schema
or into an XML schema without loss of data model information. This allows storing
or mirroring data also in relational databases or even in an XML file.

The following topics provide a short overview about ODABA features. More de-
tailed documentation is contained in User s Guide and Reference documenta-
tion.

run Software-Werkstatt GmbH
Winckelmannstrasse 61
12487 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, June 2018

- 3 -

Table of Contents
1 ODABA database features...4

1.1 ODABA and Unified Database Theory...5

1.2 Meta-model..6

1.3 Database model...7

1.4 Versioning..9

1.5 Scalable servers...10

1.6 Database access..11
1.6.1 Access interfaces...11
1.6.2 Access handles..11
1.6.3 Typed access...12
1.6.4 Views and aggregation schemata..12

1.7 Concurrency behavior..13
1.7.1 Transactions...13
1.7.2 Implicit and explicit locking features...13

1.8 Event handling..15
1.8.1 Database events..15
1.8.2 Event handling...15

1.9 Accessing external data...16

1.10 Database utilities..17

2 ODABA GUI framework..18

2.1 Application development tools..19

2.2 Object commander...20

2.3 Browser applications..21

- 4 -

1 ODABA database features

This chapter considers database features available without using the GUI frame-
work and tools provided with the Object Development Environment (ODE).

ODABA provides many enhanced database features on one hand, and, on the
other hand, tries to comply to standards as far as possible. Here, standard fea-
tures and main extensions (differences to other database management systems)
are listed.

The theoretical base for ODABA is Unified Database Theory, which defines ab-
stract database model levels for different types of databases. ODABA combines
the flexibility of key/value stores (P0) with the simplicity of relational databases
(P1), the complexity of object-oriented databases (P2) and analytical features of
data warehouse technologies (P3).

http://www.odaba.com/content/downloads/documentation/P1_UnifiedDatabaseTheory.pdf

- 5 -

1.1 ODABA and Unified Database Theory

The ODABA database management system supports different database model
levels as being described in Unified Database Theory. Similar levels have been
encountered in Terminology Model, i.e. when reflecting subject area knowledge in
terms of human language. Hence, ODABA not only unifies different database
model levels, but also harmonizes human and technical languages.

Key/value stores

P0 database models are typically provided as key/value stores. ODABA supports
P0 databases by means of extension properties.

Entity-relationship models

Relational databases (entity-relationship models) are considered to be P1 data-
base models, which store data in well-structured instances that are collected in ta-
bles. P1 requirements are also fulfilled by object-oriented databases, which may
store data in well-structured object instances collected in extents. This way, OD-
ABA also supports P1 requirements.

Object-oriented database models

Besides an instance schema, P2 database models allow storing any number of
data collections (e.g. children of a person), which is typical for object-oriented
databases. This also includes inverse relationships and inheritance, which also are
considered as relationships. ODABA supports the requirements on object-oriented
databases and is, hence, also a P2 database model.

Aggregation schema

P3 database features are typically implemented as aggregation schema (e.g. in
data warehouse tools). P3 database models support set relation schemata in terms
of subset/super set relations and (hierarchical) classification schemata. ODABA
supports set hierarchies (subset/super set relations) and classification schemata.
Thus, ODABA fulfills requirements for P3 database models.

http://www.odaba.com/content/downloads/documentation/P2_TerminologyModel_v2.pdf
http://www.odaba.com/content/downloads/documentation/P1_UnifiedDatabaseTheory.pdf

- 6 -

1.2 Meta-model

The dictionary or resource database containing the application database schema
and other application resources is an ordinary ODABA database based on a kind
of meta-model. The meta-model describing the resource database covers follow-
ing areas:

• data model - containing type definitions for defining data types

• documentation model - containing type definitions for documentation ob-
jects

• administration model - containing basic administration type definitions
(user, rights etc.)

• functional model - containing type definitions for implementation classes,
options and external resources.

ODABA is, conceptually, terminology-oriented, i.e. is supports terminology based
data modeling (Terminus) and allows creating database models from defined ter-
minology models. In order to provide proper documentation, all development re-
sources are linked with a documentation topic, which is typically maintained while
developing an application.

- 7 -

1.3 Database model

ODABA supports all features typical for object-oriented database models as (multi -
ple) inheritance, attributes, references/relationships, inverse relationships etc. OD-
ABA provides several useful model extensions.

All database entries (instances and indexes) contain a 32 byte entry descriptor,
which contains version and schema version information, modification count and
data base position. ODABA supports 64-bit identities (internal entry number),
which supports up to 9 223 372 036 854 775 808 database entries, which means
for the moment practically: no limit.

Transient properties

Persistent object types may contain transient properties (attributes or references),
which are evaluated when accessing the properties. Transient properties may be
defined as simple attributes (like age calculated from birth date), but may also re-
fer to complex data type or collections resulting from complex operations.

Generic attributes

Generic attributes are those, which allow storing any number of values which are
presented depending on the current environment. Typically, language depending
information are stored as generic attributes.

By means of generic attributes ODABA supports multilingual features (generic at-
tributes) in documentation topics that allow providing documentation in any num-
ber of languages.

Extension attributes

ODABA allows extending particular object instances by attribute extensions at run-
time, i.e. different instances of a given type may get different extension attributes
(one person gets a 'comment' attribute, another 'last journey').

Hierarchical enumerations

ODABA supports hierarchical enumerations (classifications). In contrast to ordi-
nary enumerations, beside value (code) and name ODABA enumerators provide a
number of additional information:

• label - language depending name
• title - short description
• description - detailed description
• type - related data type (class)
• condition - constraint applying to object instances of the class (data type)

defined by the enumerator

- 8 -

Set relations

Set relations allow defining subset/super set relationships. Extent collection may
form set hierarchies of any level. Relationship collections may refer to one super
set.

Shared inheritance

Shared inheritance allows two or more instances inheriting from the same base in-
stance (e.g. two employee instances may inherit from/refer to the same person in-
stance, when the person is employed more than once.

Weak-typed collections

Usually, collections (references, relationships, extents) are (strong) typed, i.e. all
instances referenced in the collection belong to the same type. Weak-typed collec-
tions as supported in ODABA, only require that all instances in the collection are
based on a common type (e.g. a weak-typed person collection may contain per-
son, employee and student instances, which all inherit from person). Conse-
quently, ODABA also supports untyped (VOID) collections, which may contain in-
stances of any type.

Instance ownership

The ODABA database model is defined in a way, that for each instance exactly
one owner property is defined. This makes it much easier to decide, whether an in-
stance must be removed, only from a collection or deleted completely.

Besides, other options are available for controlling the automatic instance deletion
behavior.

Copy model

When copying instances between or within databases, problems may arise, espe-
cially, when using deep copy option (i.e. copying an instance and all its referenced
instances recursively). Usually, default copy rules are sufficient to avoid unlimited
recursions by defining primary and secondary relationships for inverse relation-
ships. Complex database models may, however, cause copy conflicts and require
a specific copy model, which defines the sequence of extents to be copies and
copy options for relationships.

- 9 -

1.4 Versioning

Different versioning strategies allow freezing the state of single object instances or
a complete database. Several versioning strategies may be combined:

• version scope - defines the scope for consistent version numbers (data-
base, object space, owner or instance)

• managed - provides a hierarchy of major and minor versions, where major
versions define consistent version states and may be assigned to time
stamps.

• synchronized - version numbers are synchronized representing a temporal
order of changes

Moreover, online schema evolution allows extending a database schema without
reorganizing running databases. Schema version uses managed versioning for the
resource database, i.e. creating new schema versions will freeze the current
schema version, which allows upgrading object instances at run-time.

- 10 -

1.5 Scalable servers

ODABA may run with or without server - no different for the application. Platform
independent database format also allows using databases on different hardware
platforms and running applications in heterogeneous environments.

Local applications

ODABA supports access to databases stored on a local computer. There is practi-
cally no difference between file server and local applications. In order to support
parallel applications on a local machine, ODABA distinguish between shared and
exclusive database access, which is just a run-time option.

File server

In order to run ODABA in a local network environment, ODABA applications do not
need a database (object) server One may develop and use an ODABA application
just referring to a database file on on a shared device in a local network using file
server support. This also provides concurrent access to the database. It also
means that database files might simply be moved from one environment to an-
other.

ODABA object server

In order to support many users in a local network (LAN), an object server would
perform better than simple file server applications. In order to run an application
with an object server, the application's configuration file has to be changed slightly
and an object server has to be setup. Usually, no changes in the application are
necessary.

Replication server

The ODABA replication server allows running databases on an internet server.
Thus, clients distributed all over the world may access the same ODABA data-
base. In order to run an application with a replication server, the application's con-
figuration file has to be changed slightly and a replication server has to be pro-
vided in the internet. Usually, no changes in the application are necessary.

Replication server access is transaction based and works on a local copy (repli-
cate) of the master database. Replication server is the preferred access mode for
distributed clients in the internet. Since reading data happens with local access
speed, replication server access is fast as long as update load is low.

ODABA HTTP server

The ODABA HTTP server (OHTTPServer) is a mean of communication with an
ODABA database via HTTP internet protocol. This technique differs from previous
server technologies an is intended for supporting WEB application and App devel-
opment. ODABA supports all request types and also provides HTTP client features
for testing complex requests.

- 11 -

1.6 Database access

Database access works like accessing object instances in an object-oriented envi-
ronment. The database appears like a huge storage area, which allows accessing
data in different ways.

• typed access - allows referring to property and type names as being de-
fined in the database model. Typed access is supported for OSI and C++.

• generic access - allows accessing data via property and value handle,
which may form hierarchies. Generic access is supported for .net (C#), C+
+ and OSI.

• view access - allows accessing (usually derived) data via view definitions
and aggregation schemata.

C++ and .NET APIs provide traditional access interfaces to the database, but there
is also a scripting language (OSI), that provides direct access to database. OSI is,
syntactically, similar to Java or C++ and nearly as powerful.

1.6.1 Access interfaces

ODABA supports several language interfaces in order to access database content
in different ways. Access interfaces are provided for C++ (typed and generic ac-
cess), C# (generic access) and ODABA Script Interface OSI (typed and generic
access).

ODABA also supports mixed implementation classes (C# and OSI or C++ and
OSI).

1.6.2 Access handles

Database access functionality is provided via handles on different access layers.

• Dictionary - The dictionary or resource database contains database model
definitions, but also GUI design resources and application methods.

• Database - The data base contains application data. With one dictionary,
one may run any number of databases.

• ObjectSpace - An object space is a well-defined area (scope) within the
database, which may contain data for a specific application area (geo-
graphical area, client, ...). Object spaces may form hierarchies. The data-
base is the root object space,

• Property - Properties refer to collections or instances and provide a wide
area of access functionality.

• Value - is, typically, an elementary data item, but may also refer to com-
plex attributes or arrays.

- 12 -

All access layers are supported by appropriate handle classes with the same
name. Access handle are the base for generic data access, which is supported in
C++, .net and OSI.

1.6.3 Typed access

Typed access allows accessing properties and values by name as being defined in
the database model. OSI supports typed access by nature. In order to support
typed access in C++, C++ header files may be generated using ODE development
tools. .net does not support typed access.

1.6.4 Views and aggregation schemata

Similar to traditional databases, ODABA provides View definitions as well as ad-
hoc views (SELECT statement). In contrast to traditional view definitions, elements
of the SELECT statements (FROM, WHERE etc.) may also be referenced as oper-
ations in an operation path, which allows more flexible view definitions.

Since views support basic aggregation by the GROUP BY operation, in defining
aggregation schemata has been introduced in ODABA just setting an aggregation
option in the view definition. Complex aggregation schemata allow providing ag-
gregated data on different aggregation levels.

- 13 -

1.7 Concurrency behavior

In order to avoid concurrency problems, ODABA provides internal and external
locking and transaction features. Depending an handle access mode, ODABA for-
bids or permits concurrent instance update. An automatic update detection discov-
ers and "repairs" conflicts in case of concurrent updates.

1.7.1 Transactions

In order to make concurrent applications save, but also for improving performance
(e.g. for maintenance processes), ODABA provides different transaction technolo-
gies:

• Internal transactions - very short transactions started while running any
update function.

• Read transaction - started in order to block event generation (e.g. while it-
erating through a collection.

• Pool transaction - Medium transaction storing changes in an internal area

• File transaction - Long transaction storing changes in a file

• Work spaces - Very long transactions storing changes in hierarchical stag-
ing areas

In order to restore changes made after last backup, a recovery file may be written,
which logs all transactions.

1.7.2 Implicit and explicit locking features

In order to avoid concurrent updates, instances and indexes can be locked (read
or write lock) temporarily. Several internal and external lock features are provided:

• implicit locks - are very short locks (mainly for indexes/collections) when
being updated. All resources updated within a transaction are also locked
until the end of transaction. Also, instances are locked (write lock) implic-
itly, when being read in write mode.

• read locks - read locks may be called by applications in order to prevent a
resource from being read or updated by other processes or transactions.

• write locks - allow preventing an instance or collection from being updated
by other processes or threads

• persistent locks - allow marking instance in the database as being locked
(write lock) permanently.

• key locks . special lock mechanism in order to reduce write lock time for
collections in longer transactions.

- 14 -

There are some other types of locking global resources described in User's Guide
and Reference Documentation.

- 15 -

1.8 Event handling

Database applications generate internal events usually indicating data modifica-
tions but also state changes in access handles (open, close, select instance etc.).
Events may be received by event handlers (overloaded functions written in C++,
C# or OSI), but may also be passed by process event handlers to other application
components. Thus, database events are sent to GUI framework (when being
used), in order to indicate state changes in data or access handles.

1.8.1 Database events

Events are generated in order to signal different kinds of state transition referring
to database resource or access handle state. Most events are designed as before-
and after-events. Before-events may be used to suppress the state change in
process.

• Handle events - are generated, when opening or closing an access handle
or when changing selected data in an access handle

• Resource events - are generated, when database resources change, i.e.
while creating, updating, storing or deleting instances or while removing or
inserting instances from/into collections. Resource events are also gener-
ated when the intended state transition failed.

• Server events - in order to synchronize states between client and server,
the server sends events generated while processing a request back to the
client, which also generates the events returned.

Handle and resource events are generated on instance and property level, i.e.
events are also generated for elementary attributes.

1.8.2 Event handling

There are three different ways of handling database events:

• Overloaded event handler - In order to handle events, context classes
have to be defined for corresponding database resource (database, object
space, data type, property). Events generated call virtual event handler
functions (dummy functions) that may be overloaded in the context class
(OSI, C++, .net)

• Process event handler - In order to provide kind of generic event handling,
process event handlers may be provided. Process event handler register
themselves to a property handle in order to receive property and instance
events.

- 16 -

1.9 Accessing external data

ODABA supports accessing external data via property and value handles, i.e. us-
ing the same functionality as for accessing database data. External data may be
defined as normal data type with some restrictions caused by the external data for-
mat. ODABA also allows defining mapping schemata mapping database data
types to external data types. Last but not least, ODABA supports data exchange
with several external storage types.

File access

Property handle functionality may also be used for accessing external files (XML,
JSON, OIF, EFDS and CSV). External file structures may be defined in the dictio-
nary or in the external file (e.g. as header in a CSV file or as separate file descrip-
tion).

ODABA also provides a Directory class that allows accessing directories and
files via property handles.

Object-relation mapper (ORM)

An ORM allows running ODABA applications based on relational databases. An
entity-relationship model is created from the database schema, which may be
loaded into an ORACLE, MS SQL Server or MySQL database. Data is stored in
the relational database, but an OR mapping layer provides additional features,
which are nor available in relational databases.

Running an ODABA application based on relational databases does not support
extension features as versioning or extension properties.

Data exchange

ODABA provides import/export functions for storing/loading data from external
files. File formats supported are CSV (no names, no hierarchies), ESDF (no
names), XML, OIF and JSON.

ODABA also supports defining an exchange mapping schema in order to
import/export data partially and with different names and hierarchies in external
files.

- 17 -

1.10Database utilities

In order to support maintenance functions and other services, ODABA provides a
number of utilities, for copying, checking and repairing databases, but also for
loading schema definitions (ODL), running OSI scripts and investigating the data-
base via a command line shell.

Maintenance tools

Maintenance tools are several tools for database backup, restore, copy, setup and
check, but also for obtaining database statistics and database state information.
Also maintenance tools include database repair utilities.

Language tools

Language tools provide ODABA specific language tools:

• ODL - Schema loader allows loading a database schema from an external
ODL file

• OSI - OSI interpreter allows calling OSI functions from a command.

• OShell - Command line tool that allows browsing through a database and
creating, updating or deleting data.

• OSI debugger - OSI provides a debug feature that allows debugging OSI
scripts for command line and GUI tools

Database servers

Several servers may be called from command line or started as daemon/service.

- 18 -

2 ODABA GUI framework

The ODABA GUI framework is a technology based on Active Data Link (ADL),
which passed database events to GUI controls in order to automatically fill data in
GUI forms and lists. The GUI framework supports implementing GUI applications
based on database model.

The ObjectCommander (GUI data browser) and is the GUI equivalent of the OS-
hell command line tool. Moreover, several browser tools and components are pro-
vided.

http://www.run-software.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_Object_Commander.html
http://odaba.com/content/downloads/documentation/1.7_ActiveDataLink.pdf

- 19 -

2.1 Application development tools

The GUI framework has been used providing a number of development tools sup-
porting development phases from analysis (Terminus) via defining database model
and implementing methods (ClassEditor), GUI designer for building GUI applica-
tions (Designer) up to documentation (Terminus) and test (TestBrowser).

Development resources are linked with documentation topics, that support docu-
mentation during application development. Later, document generation features
may be used for creating documents from document topics. Also content of docu-
ment topics may be displayed as detailed online help in GUI applications.

• Terminus - provides problem analysis functionality, but also document gen-
eration features for producing LibreOffice and HTML documents

• ClassEditor - provides database model builder and database model check
functions. Also, it contains class implementation features inclusive check
functionality for OSI functions, documentation features and code generator
for C++ and C#, interface generator for generating OSI interface functions
that allow calling C++ functions from OSI functions and others.

• Designer - supports object-oriented GUI design. Controls and forms are
considered as methods of design classes. Data binding to class properties
automatically controls filling and refreshing controls and forms.

• TestBrowser - ODABA provides a test framework that allows running auto-
mated tests in a command line environment. The TestBrowser provides a
GUI application for defining and running tests.

The ODABA GUI framework also supports debugging GUI sessions after being ex-
ecuted. In order to record and replay GUI sessions, the Activity Log may be en-
abled. The activity log records all activities of one or more GU applications. For
each action in a GUI application, a time stamp, user name, process ID, action type
and name and action parameters are recorded.

http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_ClassEditor.html
http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_Activity_log.html
http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/ATA_Test_framework.html
http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_Designer.html
http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_ClassEditor.html
http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_Terminus.html
http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/ATA_Test_framework.html
http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_Terminus.html
http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_Designer.html
http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_Terminus.html

- 20 -

2.2 Object commander

The ObjectCommander (GUI data browser) and is the GUI equivalent of the OS-
hell command line tool. The Option browser supports defining any number of data
sources (databases) and browse data for two data sources simultaneously similar
to midnight or total commander.

Besides browsing data, instances or collections may be copied within or between
databases and data may be created, updated or deleted. Also, one may run OS-
hell commands or osi actions.

http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_Object_Commander.html

- 21 -

2.3 Browser applications

ODABA provides a number of Browser applications, which may be used for getting
specific applications, but also as examples for ODABA GUI framework applica-
tions. Many of these applications ar scripted simply using OSI, so one may adapt
applications to special needs.

• MessageBrowser -has been provided in order to provide an enhanced
message view to the error log. Besides the error written to the error log the
Message Browser displays explanatory text for each registered error. De-
pending to the configuration, the display refreshes continuously and old
messages are removed from the message browser.

• OptionBrowser - has been provided for configuring application databases
or examining application options. Besides using configuration or ini-files
for setting options, options may also be defined in an option hierarchy in
the application database.

• ActionBrowser - The action browser, which is also an integrated function in
ClassEditor (menu item Objects/Action Controls), is used for defining
and documenting actions to be executed in an application.

• DirectoryBrowser - is an example demonstrating how to access file system
resources in an ODABA environment. Is shows directories and file content
of a directory defined in the option ROOT_PATH. The file structure is im-
ported into a (temporary) database and shows the directory trees and file
content.

http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_Directory_Browser.html
http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_ClassEditor.html
http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_Action_Browser.html
http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_Option_Browser.html
http://www.odaba.com/content/documentation/odabagui/#ode/HierarchyTopics/OGT_Message_Browser.html

	1 ODABA database features
	1.1 ODABA and Unified Database Theory
	1.2 Meta-model
	1.3 Database model
	1.4 Versioning
	1.5 Scalable servers
	1.6 Database access
	1.6.1 Access interfaces
	1.6.2 Access handles
	1.6.3 Typed access
	1.6.4 Views and aggregation schemata

	1.7 Concurrency behavior
	1.7.1 Transactions
	1.7.2 Implicit and explicit locking features

	1.8 Event handling
	1.8.1 Database events
	1.8.2 Event handling

	1.9 Accessing external data
	1.10 Database utilities

	2 ODABA GUI framework
	2.1 Application development tools
	2.2 Object commander
	2.3 Browser applications

