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ABSTRACT

The  paper  provides  a  common  mathematical  database  theory 
that  unifies  relational  databases,  data  warehouse  models  and 
object-oriented database models. It is based on long experiences 
reflected  in  human  language  models  and  database  system 
development.  This  is  a  short  version  of  the  theory.  The 
complete  version  can  be  requested  at  reinhard.karge@run-
software.com. 

The paper discusses a state model as the base for storing data in 
a database. This includes specific ways of collecting states in 
instances and instance collections as well as ordering states in 
classes by means of classifications. Thus, database models can 
be described on four different levels according to the degree of 
order in the database. 

The  paper  investigates  how  far  principles  of  presenting 
knowledge in human language can be used as basic rules for 
building  database  systems.  It  shows  a  way  to  formalize 
knowledge  presentation  in  human  language  and  how human 
language principles as ordering facts, referring to behaviour and 
causalities can be used for building database models. 

Theoretical and practical benefits of human language oriented 
DBMS (database management systems) are demonstrated. The 
paper is based on practical experiences in developing database 
management  systems  (mainly  the  object-oriented  DBMS 
ODABA) with the goal of supporting human language oriented 
knowledge presentations.

Keywords:  database,  modelling  techniques,  human  language 
model, set algebra, knowledge presentation

INTRODUCTION 

One possible approach is to define modeling rules that follow 
principles  of  knowledge  presentation  in  human  language. 
Human  language  presentations  differ  between  presenting 
concepts and facts, even though this is not obvious. Concepts 
describe  the  way  facts  are  represented,  i.e.  one  cannot 
communicate about facts without having the same concepts in 
mind.  For  defining  concepts,  those  are  explained  usually  as 
facts referring to concepts about concepts. Such concepts about 
concepts we will call human language model (HLM).

Fact Concept Human language 
model

Data Metadata Model

When describing knowledge as conceptual facts, as facts about 
facts,  we  need  a  clear  understanding  about  facts  and  their 
presentation  in  human language on  one side and  in  database 
models (DBM) on the other side. Three principles of knowledge 
presentation in human language are discussed in the paper:

 Ordering (structuring) facts
 Behavior 

 Causalities

These  principles  can  be  considered  as  basic  for  human 
knowledge  presentation  and  are  reflected  more  or  less  in 
different database systems. 

The  paper  provides  a  more  formalized  and  more  abstract 
definition of databases than described in “The Third Manifesto” 
[2]. It tries to unify the approaches of relational databases [2], 
object-oriented databases [3] and data warehouse models. This 
paper is a short summary of the results of the “Unified Database 
Theory” described in [1].

Ordering Facts/states

The term fact is used here in a sense that it describes a certain 
situation,  a state in the real or abstract world.  Facts might be 
very  complex  but  usually  they  can  be  broken  down  into  a 
number  of  atomic  facts.  An  essential  part  of  knowledge 
presentation in HLM is the way of ordering facts. Depending on 
the  degree  of  order,  we  can  define  different  levels  of  fact 
presentations in human language and databases. 

 Facts and states (level 0 presentation)

The simplest way to describe facts in human language is just 
referring  to  a  fact,  i.e.  identifying  the  related  object,  the 
property described, the time of observation and the value. Facts 
represented in a database we will call states. 

 Type related facts (level 1 presentation)

In HLM, facts are frequently arranged or collected according to 
given concept  (or  type in a database environment).  Concepts 
(types)  are  associated  with  a  number  of  characteristics 
(properties) that provide a common way of describing objects 
of the given type. This way, states for each type are ordered in 
so-called instances.

 Object collections (level 2 presentation)

On  the  other  hand,  not  only  properties  but  also  objects  or 
instances  are  grouped  in  different  ways.  The  “member  of” 
relationship  is  a  typical  way of grouping  objects  in  different 
collections (classes). 

 Classifications (level 3 presentation)

The highest  level of ordering facts discussed in  this  paper  is 
provided  with  the  concept  of  classifications.  Classifications 
usually  divide  a  collection  in  a  set  of  distinct  subsets  by 
associating  objects  of  a  given  class  with  different  categories 
(subclasses). 

In principle,  higher levels of presentation are possible, but so 
far, they are not explicitly expressed in the HLM. We must note 
that  we  did  not  identify  different  presentation  levels  by  the 
ability  of  presenting  behavior  or  causalities,  since  this  is 
possible in each presentation level and not a special feature of 
the object-oriented approach.
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Rule/behavior and operation/functions

Besides  simply  presenting  facts,  human  language  is  able  to 
describe abstract rules about relations or dependencies between 
facts or the way facts will change (behavior). On the other hand, 
we can combine different facts to create derived facts by means 
of rules, or we can define rules for many other purposes. In a 
database context, we will refer to such rules as operation. 

Behavior is usually not described for a specific process but as 
an  abstraction  of  changes  or  dependencies.  Thus,  describing 
behavior is another way of expressing knowledge in HLM or in 
databases.  The  definition  of  operations  is  not  bound  to  a 
specific  presentation  level.  However,  the  complexity  of  rules 
that can be expressed on different levels is different.

Causality and event/reaction

Another  basic  principle  in  HLM  is  the  presentation  of 
causalities, i.e.  the relation between cause (or reason)  and its 
consequences.  A cause is  a certain  constellation  of facts  that 
causes  a  typical  reaction  in  the  world.  Sometimes,  a  special 
behavior  is considered as cause,  but  this is  only one specific 
way to create a constellation of facts considered as cause. 

Thus, in the paper we will consider relevant state transitions as 
cause and the consequence as resulting behavior (which might 
cause other state transitions). On the database level causes are 
presented as event and the consequence as reaction. 

Cause and consequence are reflected in HLM as facts but also 
as  abstractions.  Thus,  causalities  are  described  as  specific 
constellations on the data level but also as abstract causalities 
on the conceptual level. 

BASIC STATE MODEL 

The  basic  state  model  describes  principles  and  basic 
assumptions made for describing abstract database models. The 
basic state model considers how facts can be presented as states 
of objects in a database. It is based on the assumption that each 
fact  is  associated  with  an  object,  i.e.  that  a  fact  describes  a 
property or attribute of an elementary or abstract object.

 Here,  an  object  is  considered  as  an  abstract  term,  which 
includes  elementary  (real  world)  objects  as  well  as  abstract 
objects  (ideas,  concepts  …),  i.e.  everything  that  may  carry 
attributes or properties is considered as an object. 

Atomic State 

The state of an elementary or abstract object is defined in terms 
of  different  properties  as  quality,  attributes  or  relations.  For 
simplicity reasons we can assume: 

A1:  An  atomic  state  describes  the  relation  between  an 
identifiable object (o) and a property (p) with a property value 
(v) at a given point in time (t).

S = { s = (o,t,p,v) : oO, pP, vVp , tTI } (1a)

Here, O is the set of all objects taken into consideration, P is a 
set of defined properties and TI is a set of relevant time values. 
Vp is the property value domain.  Theoretically,  the properties 
value domain may present any type of symbols or all possible 
bit  strings  (in  a  database  environment),  but  practically  more 
specific  property  domains  can  be  defined  on  the  conceptual 
level. 

A2: Two states are considered as identical when referring to the 
same object, property and time value:

s1,s2 S  o1 = o2  p1 = p2  t1 = t2  s1 = s2 (1b)

Than we can assume:

s1,s2 S : s1 = s2  v1 = v2 (1c)

This means that a state can have exactly one value. Thus, the 
state definition  introduces three identifying components  for  a 
state as  (o,t,p), while the value is a quantitative or qualitative 
component  in  the  state.  Object  and  time  can  be  considered 
usually  as  given  real  world  phenomena,  but  there  are  also 
conceptual  objects  and  time  values.  The  property  is  a  pure 
human concept.  Practically,  the  whole  HLM is  based  on  the 
assumption  of  common  concepts.  The  decision,  whether  two 
properties are identical, is a conceptual decision (a definition) 
that allows grouping states by properties.  

There  is  obviously  no  dependency  between  object  and  time 
dimension of a state. Properties as human concepts, however, 
might  change  over  time.  We  will  assume  that  conceptual 
changes result in new properties. This is a critical assumption, 
which should be solved in future. Sometimes, properties appear 
as dependent on the carrying object. There are many reasons for 
an object not having a state for a certain property. To resolve 
this complication we will assume:

A3: There exists an empty value   in each value domain  Vp. 
The specific behaviour of the empty value in operations is part 
of the definition of the operation. 

When the state value for an object o and the property p at time t 
is   for  “non-applicable”  properties,  we  can  combine  each 
property  with  each  object  at  any  time  point.  Thus,  we  can 
assume:

A4:  Object,  time  and  property  are  independent  state 
dimensions. 

Defining the property as independent dimension,  we can also 
consider  the  value  domain  Vp as  independent  on  object  and 
time, i.e. changing the value domain for a property results in or 
is the consequence of defining a new property.

D01: An abstract state a = (o,t,p) is defined as state without 
value. The set of all possible abstract states, the abstract state 
set A is defined as product set of the state dimensions:

A = O x P x TI (1d)

O, P and TI are considered as object, property and time domain 
of  a  database.  Abstract  states  allow  describing  states  on  a 
conceptual  level.  Usually,  only  a  subset  of  abstract  states  is 
stored as state in the database but abstract state sets are the base 
for  describing  schemata,  operations  and  causalities  on  the 
conceptual  level.  Considering  S as  the  set  of  states  in  a 
database, the set of abstract states stored in S is defined as:

A(S) = { a : a=A(s)  s  S } (1e)

Complex States

A complex state is a collection of states. Complex states do not 
exist  by  nature  but  are  rather  an  expression  of  human 
knowledge.  Grouping  states  into  complex  states  is  the  basic 
method for creating high  level (Р1,  Р2,  Р3)  database models. 
Besides, complex states allow expressing dependencies or other 
types of connections between facts and play an important rule 
for describing operations and causalities. 

In the following chapters, we will refer to finite sets of objects, 
time  values,  properties,  states,  abstract  states  etc  with  n 
elements as vectors:



Xn = 
n

i 1
xi = (x1, …, xn) (1f)

Here X stands for O, P, T, S, A etc. X defines a vector with a 
finite but undefined number of elements. 

D02: A complex state Sn is a finite set of distinct states in S:

Sn  S : A(si)  A(sj)  i, j : 1  i,j  n  i  j (1g)

The  rules  for  grouping  states  to  complex  states  are  often 
described by means of abstract states in a state schema. 

State Schema

There are many ways  in  HML of defining rules for building 
complex states according to a given schema. Usually, a schema 
defines a way of grouping states in a complex state by means of 
abstract states.

D03: A state schema is a set of abstract states a complex state is 
based on. 

A(Sn) = An : ai = A(si) (2a)

Since states in  a complex state are distinct,  abstract  states in 
schema  are  distinct  as  well.  Supposing,  that  abstract  states, 
which are not  stored in  the database,  will  result  in  an empty 
state  value,  we  will  get  exactly  one  complex  state  Sn when 
applying a state schema on a state set S (database): 

An(S) = Sn (2b)

Thus, a state schema is a conceptual definition on the one hand 
and an access operation on the other hand. 

The value domain  for  each state  in  a  complex state  depends 
only  on  the  property.  Hence,  the  value  domain  for  a  state 
schema can be defined as: 

V(An) = V(Pn) = 


n

i 1
pi

V  (2c)

D04:  A  state  schema  is  called  orthogonal  when  it  can  be 
divided in independent time, object and property dimensions:

An = Oi x Tj x Pk : n = i*j*k (2d)

Oi is  called  object  dimension,  Tj time  dimension  and  Pk 

property  dimension.  The  state  schema  is  called (Oi,  Tj,  Pk) 
schema.

Since  abstract  states  in  a  complex  state  schema  are  distinct, 
objects,  time  values  and  properties  of  an  orthogonal  schema 
must be distinct as well. 

Semi-orthogonal schemata

An orthogonal schema requires a three dimensional model for 
describing  data.  Several  data  models,  however,  support  two 
dimensional  models,  only,  that  are  based  on  semi-orthogonal 
schemata.

D05: A state schema is called semi-orthogonal when it can be 
divided  in  independent  object/time  and  property,  object  and 
property/time or object/property and time dimension as:

An = OTm x Pk : OTm  Oi x Tj (2e)
An = OPm x Tj : OPm  Oi x Pk (2f)
An = PTm x Oi : PTm  Tj x Pk (2g)

This  describes  all  possible  semi-orthogonal  schemata,  even 
though  the  (OTm,  Pk) schema  is  the  typical  case  while  the 
(OPm, Tj) schema is rarely used. 

Schema Family

While a schema describes the intention of a state set, the schema 
family describes the extension of a state set. 

D06: A schema family  SF describes a set of semi-orthogonal 
schemata (I,E) with a constant vector I.  

I is called the intentional dimension of the schema family, while 
E is  the  extensional  dimension.  In  principle,  any of  the  two 
dimensions  of  a  semi-orthogonal  schema  might  become  the 
intentional  dimension,  but  usually  the  dimension  with  the 
property  component  is  considered  as  intentional  dimension. 
Hence, we will consider mainly the O, T and OT dimension as 
extensional dimensions. 

We will refer to a finite set of vectors as:

X   { X : X  X } (3a)

nX  describes a subset of  X  containing  n vectors. Now, we 

can  define  an  object  extension  as  O .  Since  the  number  of 

objects in a database is finite,  O  is  finite as well.  The same 

way,  we can define a set of time vectors.  T .  The number of 
time values is not finite in reality. For a database, however, we 
can assume that there is a minimum distance between the time 
points of two facts, i.e.

A5:  There  exists  a  minimum  time  interval  t,  which  is  the 
minimum measure  distance  between  two  observations  in  the 
database. 

 t  TI  t > 0 : t1 – t2 > t  s1,s2  S  t1 > t2 (3b)
Now, the time domain TI for a database becomes finite andT  is 

finite  as  well.  At  least  OT  defines  a  set  of  property/time 
vectors. Since it does not make sense considering extensions on 
property  vectors,  we  will  consider  only  object,  time  and 
object/time extensions. 

D7: A regular schema family is a schema family with a distinct 
set of states: 

 Aa, Ab  SF  Aa  Ab  Aa  Ab =  (3c)

Since  the  property  dimension  is  constant,  elements  in  the 
object/time dimension for a regular schema family are distinct. 
Then, we can show, that:

S1:  Each  regular  schema  family  is  equivalent  to  a  semi-
orthogonal schema with the same intentional dimension.

S2:  Each semi-orthogonal  schema, which is not  an  (o, t,  Pk) 
schema, is equivalent to a regular schema family. 

D8: A finite set of schemata SFn where the schemata are based 
on each other, is called grouping schema. 

 SFi  SF  i > 1  SFi+1 = SF(SFi) (3d)

There might be any number of schema families for a schema as 
well  as  any number  of  sub-schemata.  Unfortunately,  schema 
families  may  run  into  recursion.  On  the  other  hand,  the 
grouping function for a schema family does not depend on the 
intentional dimension, i.e. that the grouping schema is defined 
by the extensional dimension, only. 

D09: A type schema is a schema that is equivalent to a regular (
OT , Pk), (O , TPk) or (T , OPk) schema family or to an (o, t, 
Pk) schema. 



A type schema defines an intentional component of a schema 
family,  which  is  fixed  in  dimension  and  thus,  conceptually 
predefined, and an extensional component, which is defined as 
grouping schema. Now, we can show, that:

S3: Each type schema can be divided into a finite number of 
orthogonal (O, T, Pk) type schemata.

 SF = 
n

i 1
(O i, T i, Pki)  (O , T , P ) (3e)

Several  statements  on  the  following  pages  are  restricted  to 
orthogonal type schemata. This is, however, more a theoretical 
restriction,  since  most  known  schemata  are  orthogonal  type 
schemata  or  can  be  divided  into  a  number  of  orthogonal 
schemata. 

SCHEMA COMPONENT

In an orthogonal type schema the intentional component  Pk is 
called  type.  The  extensional  components  O  and  T  are 
described  as  object  schema and  time  schema,  which  are 
grouping schemata for the object and time dimension. 

Object schema

The conceptual  part  of an object  schema is  the  definition  of 
object collections O for the sub-schemata and relations between 
sub-schema  and  grouping  objects.  Conceptually  an  object 
collection  may  express  a  grouping  approach  as  well  as  a 
collection of objects with well defined roles. 

A6: In an object schema, each object collection is defined in the 
context of exactly one object  og, which is called the grouping 
object for O. 

Typical examples for object schemata are grouping hierarchies 
or object frames (pre-defined sets of objects). Object schemata 
can be expressed in three ways. Typically and well known are 
object relations, where each grouping object is related to the 
objects that it is grouping. 

Og(t,p) = { (o, og)  O x O } (3f)

Since collections may change over time, grouping relations are 
time depending.  The object  relation may describe a 1:1,  1:N, 
N:1 or M:N relation. This means practically, that both objects in 
the relation could be considered as grouping object including 
the case that an object group consists of only one object. Hence, 
we can also define an inverse grouping relation  Ig(Og(t,p)) for 
each object relation with:

Ig(Og(t,p)) = { (og, o) : (o, og)  Og(t,p) } (3g)

D10:  A  collection  property is  a  property,  where  the  value 
domain is a set of object vectors:

sc = (o,t,pc,v) : V(pc) O (3h)

Since there exists an inverse grouping function each collection 
property  has  an  inverse  collection  property  that  defines  the 
inverse collection of the object relation.

The  third  way is  expressing  an  object  schema  by  means  of 
membership states. 

D11: The membership state for a given object collection O at a 
certain time point t is defined as follows:

v = o  O(t,p) : s = (o, t, p, v)  Vp = {true,} (3i)

where  O(t,p)  is  the  object  collection  described  by  the 
membership property p at time t.

As  well  as  property  collections  membership  states  imply  an 
inverse membership property for each membership property.

S4: Presentations  of  grouping  relations  by  means  of 
membership  properties,  object  relations  and  collection 
properties are equivalent. 

Thus, it is only a matter of operations to be performed, which 
one to choose. For access functions the collection properties are 
most  comfortable,  while  causalities  are  easier  to  describe  by 
means of membership properties. An object relation is the most 
efficient  way of storing membership  states,  since it  does  not 
require an explicit inverse element.

Grouping is based on the assumption that there exists at least 
one  grouping  object  for  each  object  collection  (A6).  Since 
grouping objects can be grouped again etc, an object set O may 
contain any number of grouping objects. 

D12:  An  object grouping  schema O is  an  object  schema, 
which defines exactly one generating object set for each object 
in O:

o  O E On  O : o = G(On)

Objects  in  a  grouping  schema  with  o  =  G({o}) are  called 
elementary objects. Objects in a grouping schema, which are 
not elementary, are called aggregated objects. 

For  a  grouping  schema,  we  can  define  the  inverse  grouping 
function I as:

I(o) = On (3k)

which describes the ungrouping of objects. 

D13: An object grouping schema O is called recursive, when 

In(O)  OE : n = dim(O) (3l)

A non-recursive schema is called object hierarchy. 

In a hierarchy, each object belongs to exactly one level, where 
the level L(o) is the maximum number of possible ungroupings 
for each object in I(o), until it ends up in an elementary object. 

D14:  An  object  hierarchy  is  called  strict,  when  for  all 
aggregated objects in a hierarchy

 o  OA: L(oi) = L(o)-1  oi  I(o) (3m)

D15: A object grouping schema is called distinct, when 

 oa,obOA : oa ob  I(oa)  I(ob) =  (3n)

We can define the set of aggregated objects on level  k in the 
hierarchy as:

Lk(O) = { o  OA : L(o) = k  k > 0 } (3o)

D16: A strict object hierarchy is called complete, when for all 
aggregated objects for each level in the hierarchy 

 k > 0 : I(Lk(O))  Lk-1(O) (3p)

Thus, in a complete hierarchy each higher level aggregates all 
the objects on the next lower level. 

D17:  A  complete  and  distinct  object  hierarchy  is  called 
classification. 

Considering  aggregated  objects  as  conceptual  objects 
(categories),  they can  be  defined  without  any relationship  to 
elementary objects as conceptual hierarchies or classifications. 
A  conceptual  object  hierarchy  may  apply  to  any  object 
collection. In contrast to conceptual object hierarchies, ad hoc 
hierarchies can be defined by defining a hierarchy of grouping 



objects and associated generic membership properties. Ad hoc 
classifications are more flexible, since categories correspond to 
objects in this case, which are created on demand. 

Each aggregated object in an object hierarchy defines a class of 
elementary objects:

C(o) = Ik(o) : k = L(o) (3q)

When  applying  a  conceptual  classification  on  a  set  of 
(elementary)  objects,  the  conceptual  classification  will  create 
object  classes.  Thus,  conceptual  classifications  are  operations 
that provide a set of distinct object classes on each level of the 
hierarchy, when applying on a set of elementary objects. 

For an object set many hierarchies can be defined, which share 
at  least  the  “total”  level.  In  general,  each  level  in  an  object 
schema  might  have  many  sub-schemata  and  many  parent 
schemata. Thus, we can consider an extended object schema as 
a family of hierarchies or classification, which is described as an 
acyclic directed graph of hierarchy levels [1]. 

Component Schema

In many cases, an object schema can be described as orthogonal 
schema.  An  orthogonal  object  schema  can  be  expressed  as 
product of components: 

O = 


n

i
iO

1
 (3r)

When  any  of  the  object  components  Oi in  the  schema  is 
described  as  family of  object  hierarchies O(i),  we  can  define 
separate aggregations for those object components. This makes 
sense,  only,  when  the  grouping  schema for  each  component 
refers to the same set of elementary objects. 

Time Schema

A time schema defines a rule for creating a set of time points or 
time intervals  T. In principle, a time schema follows the same 
rules as an object schema. The difference is, that time represents 
a continuum while object sets can be considered as discrete. On 
the other hand, time has usually a known value domain, which 
is  not  the  case  for  objects.  Thus,  time  schemata  are  usually 
conceptually  ones.  Similar  to  object  schemata  we can  define 
hierarchies and classification for time schema [1].

Time schemata are very simple in many cases as being defined 
for  a  fixed  time  value  (interval  or  point)  or  presenting  all 
“current”  states  (time  is  always  “now”).  But  there  are  more 
complex  time  schemata  and  the  interest  in  time  schemata  is 
growing.

Type schema

Types in a type schema are used to order the properties of a 
database schema according to basic concepts (types). 

D18:  A  type defines  the  intentional  dimension  in  a  type 
schema. 

Thus, the type might be based on an (o,TPm) schema as well as 
on an (t,OPm) schema. Since those schemata can be divided into 
a finite number of (o,t,Pk) schemata, we will consider Pk types, 
only.

T = Pk  Pk  P (4a)

The set of all types  T in a database schema is then defined as 
subset of P . We can consider a schema as valid, when it does 
not contain duplicate abstract states. Then it follows: 

S5: A type schema is valid when the types defined in the sub 
schemata are distinct.

 T1,T2  T  T1T2  T1  T2 =  (4b)

We will use a combination of type and property name  T.p to 
identify  a  property.  In  many  cases  we  refer  to  complex 
properties  based  on  a  type  again  (e.g.  address  of  residence). 
Thus, complex properties can be associated with a type, while 
the type for elementary properties is . Now we can introduce a 
type function that returns a type for each property:

Ts = T(p) : p  P  Ts  T (4c)

D19: A property with T(p)   is called typed property.

Since  T(p) is a type  Ts we can refer to properties  ps in  Ts as 
Ts.ps or T(p).ps or shortly as T.p.ps.replacing the type function 
by the ‘dot operator’. Then we can define property paths as:

p = T.pn : pi+1  T(pi) : i = 1 … n-1 (4d)

Then  T.pn defines the set of all property paths with length  n. 
We can  consider  each  typed  property as  collection  property, 
which  refers  to  a  set  of  related  objects.  Then,  T.p defines  a 
grouping function for typed properties, where any object of type 
T groups the objects in the typed property p. It can be shown, 
that 

S6: Each typed property path T.pn defines a grouping hierarchy 
of level n. 

This means that each property path defines an ad hoc hierarchy 
or classification. In contrast to conceptual grouping schemata, 
ad hoc grouping schemata define the links, while the grouping 
depends on the states stored in the database. Finally, it follows:

S6: Each property path defines a type schema.

pnP: SF(o,t,pn) = (O, t, Pk) (4e)

Since access operations as well as set and other operations are 
based on  schemata,  property paths  can  be referred  to  in  any 
operation that is based on an appropriate type schema. 

Applying a type on a database  S at a certain time point  will 
result in a schema as:

T(t,S) = (O,T,Pk) (4f)

Thus, each type defines also an extension and can be considered 
as grouping schema.

On the  other  hand,  we  can  add  an intentional  aspect  to  any 
classification, i.e. each class (grouping object) in a classification 
becomes a type.  In  this  case,  each grouping class is the base 
type for the grouped objects. 

DATABASE MODELS

A general  problem results from the fact,  that the existence of 
any  object  might  be  philosophically  doubtful,  but  in  human 
reflections,  objects  do  not  exist  at  all,  i.e.  at  least  human 
language is reflecting concepts, which are related to types rather 
than to objects. Practically, the whole object-oriented approach 
turns out to be a type-oriented one. Since the object concept is 
not  detailed  enough,  it  must  be  replaced  by  an  extended 
instance concept, which also reflects the object approach [1]. 

Depending on the degree of order, we can define schemata on 
different levels. A level 0 schema is based on an (o,t,p) schema 
(elementary approach).  The  (o,t,p) schema is the schema that 
causes less redundancy problems on the one hand, but has a bad 



performance on the other hand. Databases based on an  (o,t,p) 
schema are called Р0 databases.

A level 1 schema is a schema that is based on a simple type 
schema  based  on  a  set  of  distinct  (o,t,Pk) schema  families 
without  supporting  typed  properties.  Most  of  relational 
databases  are  based  on  a  level  one  storage  schema  and  are 
called Р1 databases. 

The  level  2  schema  is  a  level  1  schema,  which  in  addition 
supports  typed  properties,  which  present  object  collections. 
Typically,  object-oriented  databases  are  based  on  a  level  2 
schema1 and are called Р2 databases. 

A level 3 schema is a level 2 schema that supports conceptual 
grouping  schemata  in  addition.  Cubes  in  a  data  warehouse 
model are typical examples for supporting grouping schemata. 
Since  many  data  warehouse  models  are  based  on  a  level  1 
schema without supporting typed properties they cannot really 
be called Р3 databases.

Schemata and schema families are basically used to define the 
storage schema for  a database.  But  they can also be used to 
define a  number  of view schemata  based on  a  given  storage 
schema. 

STATE OPERATIONS

While  the  schema  defines  access  mechanisms  for  providing 
complex states according to a state schema, operations provide 
state transformations rules. Operations can be referenced in a 
state schema as well as in an application.

State operations represent a type of knowledge that is used to 
build  derived  states  from  existing  (stored)  states,  providing 
validation  rules  for  ensuring  validity  of  states  stored  in  a 
database and for many other purposes. 

D20:  State operations are  functions  that  are  based  on  an 
elementary or complex state creating a derived state:

f: 'S   S’  S  S’  S  'S (5a)
S’ is called  extended state set. States in  S0 = S’-S are called 
derived states and S0 the derived state set. 

State operations can be described as 

f (S) = f(A,V) = (fa(A,V), fv(A,V)) = (A’,V’) (5b)

The abstract state function  fa describes the potential  result set 
and  the  operation  rule.  The  value  function  fv describes  the 
values created for the resulting states.

Important subclasses of operations are:

f (S) = (fa(A,V), fv(V)) (5c)
f (S) = (fa(A), fv(V)) (5d)
f (S) = (fa(A), fv(A)) = f(A) (5e)
f (S) = (fa(A), fv(A,V)) (5f)

Special attention must be paid to operations of class (5c), which 
allow describing  set operations for a constant value function 
(fv(V)  =  V).  A sub-class  of  (5c)  is (5d),  the  set  of  regular 
operations, which allows defining most of the  derivation and 
aggregation operations  [1].  A typical  example  for  (5e)  is  a 
count operation, while (5f) could express an average function.

Each  operation  is  defined  based  on  an  argument  schema  A, 
which  defines  in  the  value domain  for  the  value  function  as 
V(A),  and  an operation  schema.  The abstract  domain  for  the 

1  Not  all  object-oriented  databases  provide  ful  support  for  typed 
properties.

operation arguments is defined by a schema family based on the 
argument schema. The operation schema defines the schema for 
the abstract result domain of the operation, which is a schema 
family based on the operation schema.

When applying an operation on an argument schema instance, it 
will create one result schema instance. Applying the operation 
on a set of schemata (subset of the abstract value domain for the 
operation), the result is a set of schemata, which is a subset of 
the  result  domain  for  the  operation.  We  will  refer  to  an 
operation as:

 arg.oper [ (parameters) ] (5g)

since  this  allows  a  clear  distinction  between  arguments  and 
parameters, which are used to control generic operations. Since 
an operation creates an instance according to the schema of the 
result domain, which is again a schema instance, the operation 
result can be used as the input for another operation etc.

arg.oper1(parameters).oper2 … (5h)

Operations can also be used to increase the schema level, i.e. 
specific  operations  can be  defined  for  upgrading  to  the  next 
higher schema level (e.g. applying the instance operation on a 
level 0 schema results in a (o,t,Pk) type schema) [1].

In  a  Р0 model  the  abstract  operation  domain  is  restricted  to 
unstructured sets of states. The Р1 model, which orders states in 
types, may pass typed instances or collection of typed instances 
to  the  operation.  The  Р1 model  supports  operation  classes, 
which  operate  on  instances  of  a  given  type,  but  also  very 
generic operations like the SELECT statement in SQL. SQL as 
a  highly  standardized  operation  language  for  Р1 models 
provides a few very generic operations. 

The Р2 model, which supports typed properties, might even pass 
collections  as  arguments  to  an  operation  (which  is  different 
from  passing  a  collection  of  instances  to  an  operation). 
Considering a typed instance in the Р2 model, we can view the 
properties as an access operation to an instance, i.e. T.p defines 
an operation,  which  is  based on  an  (o,t,T) schema,  and  that 
returns an instance collection according to an (O,t,TR) schema, 
where TR = T(p). Thus, the property path is a special form of an 
operation  path,  which  allows  combining  property  paths  and 
operations in an operation path. 

The  Р3 model,  which  supports  classification  or  grouping 
schemata  in  addition,  allows  applying a  grouping schema on 
any  collection,  which  provides  the  necessary  category 
properties. Associating a hierarchy schema with an aggregation 
schema [1] allows performing aggregations for all nodes in the 
hierarchy graph as typical data warehouse function.

View schema

A view schema is a schema on level 0, 1, 2 or 3, which provides 
an extended view to the storage schema. In contrast to storage 
schemata, sub-schemata in view schemata may overlap. 

The schema allows  defining the  intentional  aspect,  while  the 
operation  defines  the  extensional  aspect.   The  view  schema 
combines the operational and intentional aspect. 

D21: A view schema is a schema family SF that can operate on 
an argument schema family 

SF = (I,E) : E = arg.oper  in = arg.opern (5i)



Thus, a view defines a schema but also an operation,  since it 
operates  on  an  argument  schema,  which  could  be  S.  Since 
schemata and operations are specific views, view definitions can 
completely describe the operational and the schema aspect of a 
database  [1],  i.e.  the  complete  database can be  described  by 
views. A view allows also upgrading a level n schema to a level 
n+1 schema. 

A view schema allows  defining a specific view for  a certain 
group  of  users.  Using  terminology  models  and  semantic 
interfaces  [4]  is  a  simple  way  of  defining  consistent  user-
oriented view schema. 

CAUSALITIES

The  HLM  is  also  describing  consequences  of  special  state 
transitions (cause – consequence), dependencies and conditions. 
While cause and consequence describe a preceding reason and 
the following consequence, a dependency describes a number of 
state transitions that happen always simultaneously. A condition 
restricts the number of possible state transitions.

Since we assumed a minimum time interval  tΔ where no state 
transition is recognized (A5), state transitions between tΔ are t - 
tΔ can be considered as simultaneously.  We will also assume, 
that the consequence follows immediately after the cause. 

A cause is described by a number of state transitions between t 
and t - tΔ while the consequence describes a number of state 
transitions between t and t + tΔ. This does not allow describing 
“older” state transitions (before t - tΔ) as reason for a later state 
transition.  We can,  however,  describe causality chains  where 
the consequence is the reason for another state transition etc. 

State transitions

Changes can be reflected as state transitions in a database. A 
state transition describes the change of an abstract state between 
two time points, i.e. a state transition describes the value for a 
certain property of a given object before and after a change. 

D21:  An  elementary  state  transition describes  the  pre-state 
and  the  post-state  for  an  object  related  to  a  certain  property 
between two time points. 

Sba = { st = (sb,sa) : (sb,sa)  ST  ST = S’ x S’  
 tb < ta  pb = pa  ob = oa } (6a)

ST is called set of potential state transitions.

The  definition  refers  to  the  extended  state  set S’,  since 
causalities can be described by means of derived states as well. 
In  a state transition,  pre-state and post-state refer to the same 
object and the same property. The time point for the post-state 
is always greater than the time point for the pre-state. While the 
state presents a static view to a fact, the state transition presents 
a dynamical view, a process. 

An  elementary  state  transition  is  an  orthogonal  state  (o,{tb, 
ta},p) schema  with  a  value  domain  Vp

2,  which  describes  all 
possible state transitions. 

D22: The state transition function returns whether a potential 
state transition ‘has happened’ or not, i.e. whether pre- and post 
state are states in a database S:

fst : Sba{true, false} : fst(st) = ( st  ST ) (6b)

We can define complex state transitions Sc as a number of state 
transitions that happen at the same time t0. 

D23: A complex state transition Sc is a finite set of elementary 
state transitions with the same transition time. 

Sc  { (sb,sa) : (sb,sa)  ST  ta = t0  tb = t0- t } (6c)

This  means  that  all  changes  happen  “simultaneously”.  t0 is 
called the transition time of the complex state. The schema for a 
complex state  transition  can  be described  as  semi-orthogonal 
schema:

AT = A(ST) = (A(Sb), A(Sa)) = ({t- t, t}, OPn) (6d)

Hence, the value domain for a complex state transition is: 

Vba = Vb x Va = V(Pn)2 (6e)

The set of potential state transitions can now be described as:

SAT = AT x Vba (6f)

D24: A complex state transition is called orthogonal when it is 
based on an orthogonal schema: 

AT = A(ST) = Oi x (t- t, t) x Pk (6g)

We can define a complex state transition function for potential 
state  transitions  according  to  (6b) that  describes  whether  a 
complex state transition took place or not.

fst : SAT  {true, false} : fst(ST) =
n

i 1
 fst(sbi, sai) (6h)

This means that the complex state transition function fst returns 
true when each elementary state transition took place at state 
transition time t0. Now, we can describe causalities by means of 
event and reaction schemata. 

Events

D25:  A  simple  event  schema e is  a  set  of  potential  state 
transitions based on an (O, T 2:t1=t2-t, p) schema family and a 
time  and  object  independent  event  function  based  on  an  (o,
{t1,t2),p) schema, which returns  true, when at least one of the 
state transitions in is true:

fE(e) =
e st 

fst(st)  (6i)

fE is called the event function for the event schema.

Since all state transitions in a simple event schema are object 
and time independent and based on one specific property,  the 
event function for a simple event schema does not depend on 
the abstract data state but only on the state value and we can 
turning  the  event  function  for  a  simple  event  schema into  a 
value relation.

Ve = { (vb,va)  Vp
2 : ste  fst(st) = true } (6j)

An  event  relation  can  be  expressed  by  any  expression  that 
returns true or false. In some cases before and after-state do not 
depend on each other. 

D26: A simple event schema is orthogonal when the pre-states 
for the event schema are independent on the post-states 

fe(st) =
e st 

fs(vb)   
e st 

fs(va) (6k)

Then, the event relation can be expressed as independent pre- 
and post-condition.  A general event schema can be described 
based on a complex state transition at a given event time. 



D27: An event schema describes a set of potential events that 
are based on an (O, T 2:t1=t2-t,, Pk) schema family and a time 
and object independent event function based on an (o,{t1,t2), Pk) 
schema:

fE(stk) =


k

i 1
fe(sti) (6l)

Even  though  the  intention  of  an  event  schema is  describing 
relevant types of changes, an event schema is formally a specific 
regular  operation.  Although the event  schema is described as 
property-oriented schema, it  would be possible,  defining also 
object- or time-oriented event-schemata.

D28: A  regular event schema E is an event schema with an 
event function, which is a regular operation. 

For  a  regular  events  schema  the  event  function  becomes 
independent on the abstract data state and depends on the state 
values, only. For a regular event schema we can define a value 
vector relation for a regular event as:

VE = {(Vb,Va)  Vpk
2 : stk  E  (fE(stk) = true ) (6m)

So far, the event definition describes events, caused by a single 
object at a single time point. We can expand this definition to 
multi-object events and to multi time events [1].

Reactions

D29:  A reaction  is  a  complex  state  transition  defined  on  an 
(O,t,Pk) schema family, which describes the reacting states, and 
a set of regular operations based on an (o,t,Pk) schema resulting 
in an (o,t+t,Pk) schema.

In  contrast  to  events  potential  reactions  are  described  by 
operations.  Property  vectors  for  reaction  and  event  are  not 
necessarily the same, as well as event generating objects are not 
necessarily identically with reacting objects. 

D30: A causality defines a relation between an event  e and a 
reaction r:

er  { e, r : e  ST  r  ST }

For describing causality schemata,  we need to  describe event 
schemata  and  reaction  schemata  as  potential  events  and 
reactions.  Conceptually  we  can  define  an event  schema or  a 
potential  event  as  set  of  possible  events  that  cause the same 
reactions.

D00: A causality schema CS is based on an event schema  E 
describing the associated events, where each event e will result 
in the same reaction r independent of event time te

Er  { E, r : E  SAT r  SAT } (6n)

E is the set of all events according to a given transition schema, 
that potentially results in the same reaction. 

Causalities do not create new states in a database as operations 
do, but describes when or under which conditions certain things 
will  happen.  Thus  causalities  add  the  process  aspect  to  the 
database, which activates the database.

Causality schemata can be defined for each schema level with 
different complexity. Practically, it requires an event controller, 
which is not available in many systems or only in a very simple 
form.

We can add causality definitions to an extended view schema 
for describing the circumstances that require a reaction from the 
instances in a view [1].

CONCLUSIONS

1. The  Unified  Database  Theory  provides  a  paradigm  in 
which each database model can be formally defined.

2. The  Unified  Database  Theory  allows  proving  the 
consistency of database models as well as the validity of 
database storage or view schemata.

3. Concerning the storage schema of a database, all database 
levels  are  equivalent,  since  they  can  be  upgraded  or 
reduced  by means  of operations  to  any higher  or  lower 
level.

4. Each  schema is  an  operation  and  an  interface  (between 
operations). Each operation is a schema. Thus, operations 
can be combined via schemata and reverse. 

5. The simple but powerful syntax of operation paths allows 
expressing  complex  operations  by  means  of  operation 
paths.

6. The view schema allows defining schemata and operations 
and  combining  them.  Adding  causalities  to  the  view 
schema, it becomes the universal construct for defining a 
database. 

7. Events and reactions defined by means of operations and 
schemata provide the mechanism for initiating processes. 

8. Schema,  operation  and  causalities  are  necessary  and 
sufficient for defining an active database system.
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